

# University of Insubria

### DIPARTIMENTO DI SCIENZA E ALTA TECNOLOGIA PhD in Computer Science and Mathematics of Calculus

### EXAM OF THE RISM COURSE III

Generalized Solutions in Differential Equations: Theory and Applications

Professor: V. Benci PhD Student: M. Tarsia\* Tutor: D. Cassani Advisor: E. Mastrogiacomo

Academic Year 2018–2019 26/08/2019

Exercise 1. Prove that any Non-Archimedean field cannot satisfy the Dedekind's axiom.

Solution. Let be K a Non-Archimedean field. So  $\mathbb{K} \equiv (\mathbb{K}, +, \cdot, \leq)$  is an infinite totally ordered field such that there exists at least an infinitesimal number  $\xi \in \mathbb{K} \setminus \{0\}$ . We can suppose  $\xi > 0$  and we know that, for every  $N \in \mathbb{N} \setminus \{0\}$ , it holds  $\xi < \frac{1}{N}$  (where:  $0 \in \mathbb{K}$  denotes the neutral element with respect to  $+, 1 \in \mathbb{K}$  denotes the neutral element with respect to  $\cdot, N = 1 + \cdots + 1$  (N times) and  $\frac{1}{N} = N^{-1}$  w.r.t.  $\cdot$ ).

Now let's consider the two following countable subsets of  $\mathbb{K}\colon$ 

$$A_{\xi} \doteq \left\{ -\frac{\xi}{n} \mid n \in \mathbb{N} \setminus \{ 0 \} \right\} \text{ and } B_{\xi} \doteq \left\{ -m \xi^2 \mid m \in \mathbb{N} \right\}.$$

Then it's easy to verify that  $B_{\xi}$  is a set of majorant elements for  $A_{\xi}$  in the sense that  $(-\xi < 0 \text{ and})$ , for every  $n, m \in \mathbb{N} \setminus \{0\}, -\frac{\xi}{n} < -m\xi^2$  (because equivalently  $\xi < \frac{1}{nm}$ ).

Finally, let be  $x \in \mathbb{K}$ , x > 0, another generic element among those for which -x is a majorant element for  $A_{\xi}$ : this means that, for every  $n \in \mathbb{N} \setminus \{0\}, -\frac{\xi}{n} < -x$  (in particular, x is an infinitesimal number). Then, for every  $m \in \mathbb{N} \setminus \{0\}, -x - m\xi^2$  is a majorant element for  $A_{\xi}$  as well: indeed, for every  $n \in \mathbb{N} \setminus \{0\}$ ,

$$-\frac{\xi}{n} = \left(-\frac{\xi}{2n}\right) + \left(-\frac{\xi}{2n}\right) < -x - m\,\xi^2.$$

This shows that -x can't be the minimum of all the majorant elements for  $A_{\xi}$  (because  $-x - m\xi^2 < -x$ ) and that, consequently,  $\mathbb{K}$  cannot satisfy the Dedekind's axiom.

**Exercise 2.** Find an ultrafunction u(x) such that

$$\oint_{\Gamma} |\mathrm{D}u(x)|^2 \, dx = 1$$

and such that

$$\forall x \in \Gamma, \ u(x) \sim 0.$$

Solution. Let be  $\Lambda$  an infinite set with  $\Lambda \supseteq \mathbb{R}$  and let denote  $\mathcal{L} \equiv \mathcal{L}_{\Lambda} \coloneqq \mathcal{P}_{\text{fin}}(\Lambda)$  in such a way that, for every  $\lambda \in \mathcal{L}, \lambda$  is a finite subset of  $\Lambda$ . Note that  $\mathcal{L}$  is a directed upward set with respect to  $\subseteq$  (in fact, we could write *n* instead of  $\lambda$  thinking about the correspondence  $n = |\lambda| \equiv \#\lambda \in \mathbb{N}$ ).

Thanks to the rings basic theory on maximal ideals, and in particular to the Krull-Zorn lemma, we know that there exists a field  $\mathbb{E} \equiv \mathbb{E}_{\Lambda} \supseteq \mathbb{R}$  of Euclidean numbers: that is, a totally ordered field  $\mathbb{E} \equiv (\mathbb{E}, +, \cdot, \leq)$  such that can be built a surjective homomorphism  $J: \mathbb{R}^{\mathcal{L}} \to \mathbb{E}$  (between ordered algebras).

So, given a net  $\varphi \colon \mathcal{L} \to \mathbb{R}$ , the  $\Lambda$ -limit of  $\varphi$  is by definition

$$\lim_{\lambda \uparrow \Lambda} \varphi(\lambda) \doteq \mathcal{J}(\varphi) \in \mathbb{E}$$

<sup>\*</sup>E-mail: mtarsia1@uninsubria.it. Web page: https://www.uninsubria.it/hpp/marco.tarsia.

#### EXAM OF THE RISM COURSE III – Generalized Solutions in Differential Equations: Theory and Applications

Therefore, in fact, the  $\Lambda$ -limit of nets (always exists and) satisfies all the "basic properties" of an "usual limit".

Remember also that, for every Euclidean number  $\xi \in \mathbb{E}$  which is finite (not infinite), there exists one and only one real number  $\operatorname{st}(\xi) \in \mathbb{R}$  such that  $\xi \sim \operatorname{st}(\xi)$  in the sense of infinitely closeness: this means that  $\xi - \operatorname{st}(\xi)$  is an infinitesimal number of  $\mathbb{E}$  (in particular,  $\mathbb{E}$  is in any case a Non-Archimedean field).

As a remarkable situation of this, if for every net  $\varphi : \mathcal{L} \to \mathbb{R}$  we denote  $\lim_{\lambda \to \Lambda} \varphi(\lambda)$  the usual Cauchy-limit of  $\varphi$  when it exists (so, when it belongs to  $\mathbb{R}, \forall \varepsilon > 0, \exists \lambda_{\varepsilon} \in \mathcal{L} : \forall \lambda' \in \mathcal{L}, \lambda' \supseteq \lambda_{\varepsilon} \Rightarrow |\varphi(\lambda') - \lim_{\lambda \to \Lambda} \varphi(\lambda)| \leq \varepsilon$ ), and if  $\lim_{\lambda \to \Lambda} \varphi(\lambda)$  is a finite Euclidean number, then  $\lim_{\lambda \to \Lambda} \varphi(\lambda) \in \mathbb{R}$  and

$$\operatorname{st}\left(\lim_{\lambda\uparrow\Lambda}\varphi(\lambda)\right)=\lim_{\lambda\to\Lambda}\varphi(\lambda).$$

Let's consider now the interval  $\Omega \coloneqq [0,1] \subset \mathbb{R}$  and its natural extension  $\Omega^*$  in  $\mathbb{E}$ , that means the set

$$\Omega^* \doteq \mathcal{J}(\Omega^{\mathcal{L}}) = \left\{ \left. \lim_{\lambda \uparrow \Lambda} \varphi(\lambda) \right| \varphi \in \Omega^{\mathcal{L}} \right\} \subset \mathbb{E},$$

and let be  $\Gamma$  a hyperfinite grid on  $\Omega$ : that is,  $\Omega \subset \Gamma \subset \Omega^*$  and there exists a family  $\{\Gamma_{\lambda}\}_{\lambda \in \mathcal{L}}$  of finite subsets of  $\Omega$ , so  $\Gamma_{\lambda} \subset \Omega$  with  $|\Gamma_{\lambda}| < \infty$  for every  $\lambda \in \mathcal{L}$ , such for which

$$\Gamma = \lim_{\lambda \uparrow \Lambda} \Gamma_{\lambda} \doteq \left\{ \lim_{\lambda \uparrow \Lambda} x_{\lambda} \mid \forall \lambda \in \mathcal{L}, \ x_{\lambda} \in \Gamma_{\lambda} \right\}.$$

For instance, we could imagine  $\Gamma \equiv \Gamma_{\Omega} \doteq \lim_{\lambda \uparrow \Lambda} (\Omega \cap \lambda)$ .

So let call grid function on  $\Gamma$  any function  $u: \Omega^* \to \mathbb{E}$  such that there exists a family  $\{u_{\lambda}\}_{\lambda \in \mathcal{L}}$  of functions  $u_{\lambda}: \Omega \to \mathbb{R}, \lambda \in \mathcal{L}$ , such for which

$$u\big|_{\Gamma} = \lim_{\lambda \uparrow \Lambda} u_{\lambda}$$

in the sense that, for every  $x = \lim_{\lambda \uparrow \Lambda} x_{\lambda} \in \Gamma$  (where  $x_{\lambda} \in \Gamma_{\lambda}$  for every  $\lambda \in \mathcal{L}$ ), it holds

$$u(x) = \lim_{\lambda \uparrow \Lambda} u_{\lambda}(x_{\lambda}).$$

Note that, for every function  $f: \Omega \to \mathbb{R}$ , its natural extension  $f^*: \Omega^* \to \mathbb{E}$  on  $\Omega^*$  given by

$$f^*\left(\lim_{\lambda\uparrow\Lambda}x_\lambda\right) \doteq \lim_{\lambda\uparrow\Lambda}f(x_\lambda), \quad x_\lambda\in\Omega,$$

is trivially a grid function on  $\Gamma$ . About that, let's observe that in fact it would be sufficient to define a grid function u only on  $\Gamma$ , starting from  $\{u_{\lambda}\}_{\lambda \in \mathcal{L}}$  and defining then u on  $\Gamma$  by  $u \doteq \lim_{\lambda \uparrow \Lambda} u_{\lambda}$ , to finally take  $(u|_{\Omega})^*$  as a function defined on the whole set  $\Omega^*$ .

Now let's consider the algebra  $V^{\circ}(\Omega)$  of ultrafunctions on  $\Gamma$  modelled on the pair  $(V(\Omega), \{V_{\lambda}(\Omega)\}_{\lambda \in \mathcal{L}})$ where  $V(\Omega) \coloneqq C_c^1(\Omega; \mathbb{R})$  and  $\{V_{\lambda}(\Omega)\}_{\lambda \in \mathcal{L}}$  is a directed upward family of finite-dimensional subspaces  $V_{\lambda}(\Omega)$ of  $V(\Omega)$  which contains  $\operatorname{Span}_{\mathbb{R}}(V(\Omega) \cap \lambda)$ ,  $\lambda \in \mathcal{L}$ , and with  $\bigcup_{\lambda \in \mathcal{L}} V_{\lambda}(\Omega) = V(\Omega)$ : so  $u \in V^{\circ}(\Omega)$  if and only if u is a grid function on  $\Gamma$  such that, more precisely, there exists a family  $\{u_{\lambda}\}_{\lambda \in \mathcal{L}}$  of functions

$$u_{\lambda} \in V_{\lambda}(\Omega), \quad \lambda \in \mathcal{L},$$

such for which  $u|_{\Gamma} = \lim_{\lambda \uparrow \Lambda} u_{\lambda}$ .

Finally let's choose an ultrafunction  $d \in V^{\circ}(\Omega)$  with  $d|_{\Gamma} = \lim_{\lambda \uparrow \Lambda} d_{\lambda}$   $(d_{\lambda} \in V_{\lambda}(\Omega))$ . Then, for every  $u \in V^{\circ}(\Omega)$  with  $u|_{\Gamma} = \lim_{\lambda \uparrow \Lambda} u_{\lambda}$   $(u_{\lambda} \in V_{\lambda}(\Omega))$ , the generalized integral on  $\Gamma$  of any  $u_{\lambda}$  is given by

$$\oint_{\Gamma} u_{\lambda}(x) \, dx \doteq \lim_{\lambda' \uparrow \Lambda} \sum_{a_{\lambda'} \in \Gamma_{\lambda'}} u_{\lambda}(a_{\lambda'}) d_{\lambda}(a_{\lambda'}) \in \mathbb{E},$$

and thus, when  $\oint_{\Gamma} u_{\lambda}(x) dx \in \mathbb{R}$  for every  $\lambda \in \mathcal{L}$ , the generalized integral on  $\Gamma$  of u is given by

$$\oint_{\Gamma} u(x) \, dx \doteq \lim_{\lambda \uparrow \Lambda} \oint_{\Gamma} u_{\lambda}(x) \, dx \equiv \sum_{a \in \Gamma} u(a) \, d(a) \in \mathbb{E}$$

where the last equality follows by definition of hyperfinite sum on  $\Gamma$ . In particular, for every  $a \in \Gamma$ , it holds  $d(a) = \oint_{\Gamma} \mathbb{1}_a(x) dx$  where  $\mathbb{1}_a \equiv \mathbb{1}_{\{a\}} \colon \Omega^* \to \{0, 1\}$  is the usual indicator function of  $\{a\} \subset \Omega^*$ .

Actually, we shall consider  $\Gamma = \Gamma_{\Omega}$  and  $\{ V_{\lambda}(\Omega) \}_{\lambda \in \mathcal{L}}, d \in V^{\circ}(\Omega)$  such for which this generalized integral extends the usual Cauchy-Riemann integral; consequently,  $\oint_{\Gamma} u_{\lambda}(x) dx = \int_{\Omega} u_{\lambda}(x) dx \in \mathbb{R}$  for every  $\lambda \in \mathcal{L}$ .

Moreover let's recall the generalized derivative Du as the grid function on  $\Gamma$  determined by

$$\mathbf{D}u\big|_{\Gamma} \doteq \lim_{\lambda \uparrow \Lambda} \mathbf{D}u_{\lambda}$$

Observe that, if we let  $|\cdot| := (|\cdot|)^* : \mathbb{E} \to \mathbb{E}$  denote the natural extension on  $\mathbb{R}^* \equiv \mathbb{E}$  of the usual norm  $|\cdot|: \mathbb{R} \to [0, +\infty[$ , and similarly about the second power function on  $\mathbb{R}$ , then by definitions

$$|\mathrm{D}u|^2\Big|_{\Gamma} = \lim_{\lambda \uparrow \Lambda} |\mathrm{D}u_{\lambda}|^2$$

and in particular  $|\mathbf{D}u|^2$  is a grid function on  $\Gamma$  as well.

Finally, keeping in mind the well known Lavrentiev phenomenon (developed with hyperfinite analysis), let's take two sequences  $\{V_{\lambda}(\Omega)\}_{\lambda \in \mathcal{L}}, \{u_{\lambda}\}_{\lambda \in \mathcal{L}}$  which satisfy the three following properties:

- for every  $\lambda \in \mathcal{L}$ ,  $u_{\lambda}$  and  $|Du_{\lambda}|^2$  belong to  $V_{\lambda}(\Omega)$  and  $u_{\lambda}$  has compact support that is independent from  $\lambda$ ;
- $\lim_{\lambda \to \Lambda} u_{\lambda} = 0$  uniformly;
- $\lim_{\lambda \to \Lambda} \int_{\Omega} |\mathrm{D}u_{\lambda}|^2(x) \, dx = 1.$

Then the ultrafunction  $u \in V^{\circ}(\Omega)$  defined by  $u|_{\Gamma} \stackrel{def}{=} \lim_{\lambda \uparrow \Lambda} u_{\lambda}$  demonstrates the desired statement. In fact, on the one hand,  $|\mathrm{D}u|^2 \in V^{\circ}(\Omega)$  too and, by definitions and assumptions,

$$\oint_{\Gamma} |\mathrm{D}u|^2(x) \, dx = \lim_{\lambda \uparrow \Lambda} \oint_{\Gamma} |\mathrm{D}u_{\lambda}|^2(x) \, dx = 1;$$

on the other hand, for every  $x = \lim_{\lambda \uparrow \Lambda} x_{\lambda} \in \Gamma$  (where  $x_{\lambda} \in \Gamma_{\lambda}$  for every  $\lambda \in \mathcal{L}$ ),  $u(x) \equiv \lim_{\lambda \uparrow \Lambda} u_{\lambda}(x_{\lambda})$  is a finite Euclidean number (because  $\{u_{\lambda}\}_{\lambda \in \mathcal{L}}$  is uniformly bounded on  $\Omega$ ) and it has

st 
$$(u(x)) \equiv$$
 st  $\left(\lim_{\lambda \uparrow \Lambda} u_{\lambda}(x_{\lambda})\right) = \lim_{\lambda \to \Lambda} u_{\lambda}(x_{\lambda}) = 0$ 

(about the last equality, use that x is finite with  $\operatorname{st}(x) = \lim_{\lambda \to \Lambda} x_{\lambda} \in \Omega \cup \{0, 1\}$  and so, even if  $\operatorname{st}(x) \notin \{0, 1\}$ ,  $|u_{\lambda}(x_{\lambda})| \leq |u_{\lambda}(x_{\lambda}) - u_{\lambda}(\operatorname{st}(x))| + |u_{\lambda}(\operatorname{st}(x))| = \mathcal{O}(|x_{\lambda} - \operatorname{st}(x)|) + |u_{\lambda}(\operatorname{st}(x))| \to 0 \text{ for } \lambda \to \Lambda).$ 

**Exercise 3.** Study by means of ultrafunctions a PDE which doesn't have solutions in any distributions space.

Solution. Let be  $N \in \mathbb{N} \setminus \{0\}$ ,  $\Omega \subset \mathbb{R}^N_x$  a bounded open set,  $u_0 \in V_0^{\circ}(\Omega)^L$ ,  $T \in [0, +\infty[$ ,  $I := [0, T]_t$  and  $a : \mathbb{R}_u \to \mathbb{R}$  the quadratic polynomial function defined by, for every  $u \in \mathbb{R}$ ,

$$a(u) = u^2 - u$$

and thus let's consider the associated evolution problem

$$\begin{cases} u \in C^1(I^*, V_0^{\circ}(\Omega)^L) \\ \partial_t^* u = \mathcal{D}_{\boldsymbol{x}} \cdot \left[a^*(u) \mathcal{D}_{\boldsymbol{x}} u\right] \text{ on } I^* \times (\Gamma \cap \Omega^*) \\ u(0, \cdot) \equiv u_0(\cdot) \text{ on } \Gamma \cap \Omega^*. \end{cases}$$

It could be shown that there exists an unique global in time ultrafunction solution u such for which, on  $I^*$ ,

$$\partial_t^* \oint_{\Gamma} u^2(\boldsymbol{x}) \, d\boldsymbol{x} = \mathcal{O}(1).$$

**Proposition.** Let's assume that 0 < u < 1 on  $I^* \times (\Gamma \cap \Omega^*)$  and that, on  $I^*$ ,

$$\partial_t^* \oint_{\Gamma} u^2(\boldsymbol{x}) \, d\boldsymbol{x} \equiv 0 \quad and \quad \oint_{\Gamma} |\mathcal{D}_{\boldsymbol{x}} u|^2(\boldsymbol{x}) \, d\boldsymbol{x} = \mathcal{O}(1).$$

Then  $D_{\boldsymbol{x}} u \equiv 0$  on  $I^* \times (\Gamma \cap \Omega^*)$ .

In fact, let's consider the quartic polynomial function  $P \colon \mathbb{R}_u \to \mathbb{R}$  given by, for every  $u \in \mathbb{R}$ ,

$$P(u) = \frac{u^3}{6} - \frac{u^4}{12} - \frac{u^2}{2}$$

in such a way that  $P''(\cdot) \equiv -[a(\cdot)+1]$  and therefore, on  $I^*$ ,

$$\partial_t^* \oint_{\Gamma} P(u) \, d\boldsymbol{x} = \oint_{\Gamma} d_u^* P(u) \, \partial_t^* u \, d\boldsymbol{x} = -\oint_{\Gamma} (d_u^*)^2 P(u) \, a^*(u) |\mathcal{D}_{\boldsymbol{x}} u|^2 d\boldsymbol{x} \equiv \oint_{\Gamma} \left[ a^*(u) + 1 \right] a^*(u) |\mathcal{D}_{\boldsymbol{x}} u|^2 d\boldsymbol{x}$$

while also

$$\partial_t^* \oint_{\Gamma} P(u) \, d\boldsymbol{x} \equiv \partial_t^* \oint_{\Gamma} \left( \frac{u^3}{6} - \frac{u^4}{12} \right) d\boldsymbol{x} = \oint_{\Gamma} (a^*)^2 (u) |\mathbf{D}_{\boldsymbol{x}} u|^2 d\boldsymbol{x}$$

and ultimately

$$\oint_{\Gamma} a^*(u) |\mathbf{D}_{\boldsymbol{x}} u|^2 d\boldsymbol{x} \equiv 0$$

which is possible if and only if  $|D_{\boldsymbol{x}}u|^2 \equiv 0$  on  $I^* \times (\Gamma \cap \Omega^*)$ , and this concludes.

# References

[1] V. Benci. An improved setting for generalized functions: robust ultrafunctions. Preliminary draft, 2019.