

University of Insubria

DIPARTIMENTO DI SCIENZA E ALTA TECNOLOGIA PhD in Computer Science and Mathematics of Calculus

REPORT OF AN INTRODUCTION TO REGULARITY STRUCTURES

A Regularity Structure for Rough Volatility

Teacher: F. Caravenna

Student: M. Tarsia^{*} Tutor: D. Cassani Advisor: E. Mastrogiacomo

Academic Year 2019–2020 23/02/2020

Hölder distributions

Consider $d \in \mathbb{N}^* = \mathbb{N} \setminus \{0\}$ and $\mathbb{R}^d = \mathbb{R}^d_x$, $x = (x_1, \ldots, x_d)$, equipped by the Euclidean topology and the Borel σ -algebra $\mathcal{B}(\mathbb{R}^d)$ with the Lebesgue measure on it. We denote by \mathcal{K}_d the subclass of $\mathcal{B}(\mathbb{R}^d)$ consisting of the compact subsets K of \mathbb{R}^d and, for $\rho \in \mathbb{R}^*_+ =]0, \infty[$ and $x \in \mathbb{R}^d$, by $B_\rho(x)$ the open ball in \mathbb{R}^d of radius ρ and center x. Whenever x = 0, we write $B_\rho := B_\rho(0)$.

A smooth test or bump function on \mathbb{R}^d is a function $\varphi \colon \mathbb{R}^d \to \mathbb{R}$ which is infinitely differentiable and compactly supported. The space of the test functions on \mathbb{R}^d is denoted by $\mathcal{D}_d := \mathcal{D}(\mathbb{R}^d) \doteq C_c^{\infty}(\mathbb{R}^d; \mathbb{R})$ and it's associated to the topology induced by the following uniform convergence notion: given φ , $(\varphi_n)_n$ in \mathcal{D}_d , $\varphi_n \to \varphi$ in \mathcal{D}_d as $n \to \infty$ if there exists $K \in \mathcal{K}_d$ with $\operatorname{supp} \varphi \cup \operatorname{supp} \varphi_n \subseteq K$ for n large enough and, for any multi-index $k = (k_1, \ldots, k_d) \in \mathbb{N}^d$, $\|\mathbb{D}^k \varphi - \mathbb{D}^k \varphi_n\|_{\infty} \to 0$ as $n \to \infty$, where $\mathbb{D}^k = \partial_{x_1}^{k_1} \cdots \partial_{x_d}^{k_d}$ and $\|\cdot\|_{\infty}$ is the usual uniform norm. Thereby, \mathcal{D}_d is a complete and locally convex topological not metrizable (real) vector space satisfying the so-called Heine-Borel property. For $r \in \mathbb{N}^*$, we denote

$$\mathcal{D}_{d,r} \coloneqq \{ \varphi \in \mathcal{D}_d \mid \operatorname{supp} \varphi \subset B_r \text{ and } \|\varphi\|_{C^r} \le 1 \}$$

where $\|\cdot\|_{C^r} = \max_{k \in \mathbb{N}^d, |k| < r} \|\mathbf{D}^k \cdot\|_{\infty}$ and $|k| = k_1 + \dots + k_d$.

A Schwartz distribution or generalized function on \mathbb{R}^d is a function $\eta: \mathcal{D}_d \to \mathbb{R}$ which is linear and (sequentially) continuous w.r.t. the above topology on \mathcal{D}_d . The space of the distributions on \mathbb{R}^d is therefore the dual space of \mathcal{D}_d , in symbols $\mathcal{D}'_d \coloneqq (\mathcal{D}_d)'$, and as such it's paired with the weak-star topology induced by this pointwise convergence notion: given $\eta, (\eta_n)_n$ in $\mathcal{D}'_d, \eta_n \to \eta$ in \mathcal{D}'_d as $n \to \infty$ if, for any $\varphi \in \mathcal{D}_d, \eta_n(\varphi) \to \eta(\varphi)$ (in \mathbb{R}) as $n \to \infty$. Hence, \mathcal{D}'_d is a locally convex topological not metrizable vector space. For $\eta \in \mathcal{D}'_d$ and $\varphi \in \mathcal{D}_d$, we write $\langle \eta; \varphi \rangle \coloneqq \eta(\varphi)$.

Every function $f \in L^1_{\text{loc}}(\mathbb{R}^d; \mathbb{R})$ is identified with the distribution (on \mathbb{R}^d) defined by $\varphi \mapsto \int_{\mathbb{R}^d} f\varphi \, dx$, $\varphi \in \mathcal{D}_d$, and w.r.t. that standpoint \mathcal{D}_d results a weak-star dense subset of \mathcal{D}'_d . Even every Radon (tight) measure μ on $\mathcal{B}(\mathbb{R}^d)$ is viewed as a distribution, that given by $\varphi \mapsto \int_{\mathbb{R}^d} \varphi \, \mu(\mathrm{d}x), \, \varphi \in \mathcal{D}_d$.

For $\eta \in \mathcal{D}'_d$ and $k \in \mathbb{N}^d$, the *(distributional) derivative* $D^k \eta \in \mathcal{D}'_d$ of order k of η takes values

$$\langle \mathrm{D}^k \eta; \varphi \rangle \doteq (-1)^{|k|} \langle \eta; \mathrm{D}^k \varphi \rangle, \quad \varphi \in \mathcal{D}_d.$$

For $\varphi \in \mathcal{D}_d$, $\lambda \in [0, 1]$ and $x \in \mathbb{R}^d$, the scaled function $\varphi_x^{\lambda} \in \mathcal{D}_d$ is constructed from φ reducing it by factor λ and centering it at point x without changing its integral on \mathbb{R}^d :

$$\varphi_x^{\lambda}(\cdot) \doteq \lambda^{-d} \varphi (\lambda^{-1}(\cdot - x)).$$

Whenever x = 0, we write $\varphi^{\lambda} := \varphi_0^{\lambda}$. Note that, if $\varphi \in \mathcal{D}_{d,r}$ for $r \in \mathbb{N}^*$, then $\operatorname{supp} \varphi_x^{\lambda} \subset B_{\lambda r}(x)$ and $\|\varphi_x^{\lambda}\|_{C^r} \leq \lambda^{-r}$. Moreover, for any $k \in \mathbb{N}^d$, $\mathbb{D}^k \varphi_x^{\lambda} = \lambda^{-|k|} (\mathbb{D}^k \varphi)_x^{\lambda}$.

^{*}E-mail: mtarsia1@uninsubria.it. Web page: https://www.uninsubria.it/hpp/marco.tarsia.

For $\alpha \in \mathbb{R}_+ = [0, \infty[$, if $\alpha \notin \mathbb{N}$ then, leaning on the concept of (locally) Hölder continuous function, the space of α -Hölder functions on \mathbb{R}^d is defined as

$$\mathcal{C}_{d}^{\alpha} \coloneqq \mathcal{C}^{\alpha}(\mathbb{R}^{d};\mathbb{R}) \doteq \left\{ f \in C^{[\alpha]}(\mathbb{R}^{d};\mathbb{R}) \mid \forall k \in \mathbb{N}^{d} \text{ with } |k| = \lfloor \alpha \rfloor, \ \mathrm{D}^{k} f \in \mathcal{C}_{\mathrm{loc}}^{\{\alpha\}}(\mathbb{R}^{d};\mathbb{R}) \right\}$$

whereas, for $\alpha \in \mathbb{R}_{-} =]-\infty, 0]$, if $\alpha \notin \mathbb{Z}$ then the space of α -Hölder distributions on \mathbb{R}^{d} is defined as

$$\mathcal{C}_{d}^{\alpha} \coloneqq \left\{ \eta \in \mathcal{D}_{d}^{\prime} \mid \forall K \in \mathcal{K}_{d}, \exists C_{K} \in \mathbb{R}_{+}^{*} : \forall \varphi \in \mathcal{D}_{d, \lceil -\alpha \rceil}, \lambda \in \left]0,1\right] \text{ and } x \in K, \left|\langle \eta; \varphi_{x}^{\lambda} \rangle\right| \le C_{K} \lambda^{\alpha} \right\}$$

and finally, for $r \in \mathbb{N}^*$, the space of Hölder distributions of finite order r on \mathbb{R}^d is defined as

$$\mathcal{C}_d^{-r} \coloneqq \left\{ \eta \in \mathcal{D}_d' \mid r \text{ is the min of } s \in \mathbb{N}^* \text{ s.t., } \forall K \in \mathcal{K}_d, \exists C_K \in \mathbb{R}_+^* \colon \forall \varphi \in \mathcal{D}_d, |\langle \eta; \varphi \rangle| \le C_K \|\varphi\|_{C^s} \right\}.$$

Every distribution in \mathcal{C}_d^{-r} is canonically definable on $C_c^r(\mathbb{R}^d;\mathbb{R})$ (through a continuity standard argument). Observe that, for any $\alpha, \beta \in \mathbb{R} \setminus \mathbb{N}$, if $\alpha < \beta$ then $\mathcal{C}_d^\beta \subset \mathcal{C}_d^\alpha$. Moreover, for any $k \in \mathbb{N}^d$, $\mathbb{D}^k(\mathcal{C}_d^\alpha) \subset \mathcal{C}_d^{\alpha-|k|}$.

Remember the main issues about the operation of product between distributions, summarized by

the Schwartz impossibility theorem, and yet the importance of Hölder distributions regarding that. As for as d = 1, we emit the subscript d from each of the previously defined spaces

As far as d = 1, we omit the subscript d from each of the previously defined spaces.

Regular wavelets

For $n \in \mathbb{N}$, we denote by $\mathbb{R}^d[x; n]$ the class of the real polynomials on $\mathbb{R}^d = \mathbb{R}^d_x$ of degree n.

Theorem (Daubechies, '88). Given $r \in \mathbb{N}^*$, there exists $\varphi \colon \mathbb{R}^d \to \mathbb{R}$ with the following properties.

- **1.** The function φ is of class C_b^r and has compact support.
- **2.** For every $P \in \mathbb{R}^d[x;r]$, there exists $\hat{P} \in \mathbb{R}^d[x;r]$ such for which $P(\cdot) = \sum_{h \in \mathbb{Z}^d} \hat{P}(h)\varphi(\cdot h)$.
- **3.** For any $h \in \mathbb{Z}^d$, $\int_{\mathbb{R}^d} \varphi(x) \varphi(x-h) \, \mathrm{d}x = \delta_{h,0}$.
- **4.** There exists a sequence $(a_h)_{h\in\mathbb{Z}^d}$ in \mathbb{R} such that, for any $x\in\mathbb{R}^d$, $2^{-d/2}\varphi(x/2)=\sum_{h\in\mathbb{Z}^d}a_h\varphi(x-h)$.

The existence of such a function φ is equivalent to the existence of a wavelet basis of $L^2_d = L^2(\mathbb{R}^d; \mathbb{R})$ consisting of $\|\cdot\|_{L^2_d}$ -orthonormal C^r_b functions with compact support (proceeding according to the wavelet standard analysis of Meyer, '92). Indeed, given $r \in \mathbb{N}^*$ and taken φ as in the previous theorem, for $n \in \mathbb{N}$ we set $\Lambda^n \coloneqq 2^{-n}\mathbb{Z}^d$ and, for any $\psi \in C^r_c(\mathbb{R}^d; \mathbb{R})$ and $y \in \Lambda^n$, $\psi^n_y(\cdot) \coloneqq 2^{nd/2}\psi(2^n(\cdot - y))$. Then there exists $\Phi \subset C^r_c(\mathbb{R}^d; \mathbb{R})$ with $|\Phi| = \#\Phi < \infty$ which is orthogonal to $\mathbb{R}^d[x; r]$ and such that $\{\varphi^0_y\}_{y \in \mathbb{Z}^d} \cup \{\hat{\varphi}^n_y\}_{\hat{\varphi} \in \Phi, n \in \mathbb{N}, y \in \Lambda^n}$ constitutes an orthonormal basis of L^2_d (intimately related to \mathcal{C}^{-r}_d ...).

Regularity structures

A regularity structure is a triple $\mathscr{T} = (A, T, G)$ made by the following three elements.

• An index set A: a subset of \mathbb{R} with $0 \in A$ which is bounded from below and locally finite.

• A model space T: a graded vector space indexed over A of finite-dimensional vector spaces T_{α} , $\alpha \in A$, each of which admits basis of symbols $\{\tau_{\alpha,i}\}_{i\in I_{\alpha}}$, $|I_{\alpha}| < \infty$, i.e. $T = \bigoplus_{\alpha \in A} T_{\alpha} = \bigoplus_{\alpha \in A} \langle \tau_{\alpha,i} | i \in I_{\alpha} \rangle$, where $T_0 = \langle \mathbf{1} \rangle \cong \mathbb{R}$. Elements $\tau_{\alpha} \in T_{\alpha}$, $\alpha \in A$, are said to have homogeneity or degree $|\tau_{\alpha}|$ equal to α . Given $\tau \in T$ and $\alpha \in A$, we write $\|\tau\|_{\alpha}$ for a chosen norm $\|\cdot\|$ of its component in T_{α} .

• A structure group G: a \circ -group of linear operators Γ acting on T with $\Gamma \mathbf{1} = \mathbf{1}$ which satisfy a nilpotency property in the meaning that, for any $\alpha \in A$ and $\tau_{\alpha} \in T_{\alpha}$,

$$\Gamma \boldsymbol{\tau}_{\alpha} - \boldsymbol{\tau}_{\alpha} \in T_{<\alpha} \doteq \bigoplus_{\alpha' < \alpha} T_{\alpha'}.$$

A model for \mathscr{T} on \mathbb{R}^d is then a pair $M = (\Pi, \Gamma)$ composed of the following two families.

• A map $\Gamma = (\Gamma_{x,y})_{x,y \in \mathbb{R}^d} \colon \mathbb{R}^d \times \mathbb{R}^d \to G$ such that, for any $x, y, z \in \mathbb{R}^d$, $\Gamma_{x,y} \circ \Gamma_{y,z} = \Gamma_{x,z}$.

• A map $\Pi = (\Pi_x)_{x \in \mathbb{R}^d} \colon \mathbb{R}^d \to \mathcal{L}(T; \mathcal{D}'_d)$ such that, for any $x, y \in \mathbb{R}^d$, $\Pi_x \circ \Gamma_{x,y} = \Pi_y$ and furthermore, letting r be the smallest integer > $|\min A|$ then, for any $\gamma \in \mathbb{R}^*_+$ and $K \in \mathcal{K}_d$, there exists $C = C_{\gamma,K} \in \mathbb{R}^*_+$ such that, by varying $\alpha \in A$ with $\alpha \leq \gamma$, $\tau_\alpha \in T_\alpha$, $\varphi \in \mathcal{D}_{d,r}$, $\lambda \in [0, 1]$, $x, y \in K$ and $\alpha' < \alpha$,

$$|(\Pi_x \boldsymbol{\tau}_{\alpha})(\varphi_x^{\lambda})| \leq C \lambda^{\alpha} \|\boldsymbol{\tau}_{\alpha}\| \quad \text{and} \quad \|\Gamma_{x,y} \boldsymbol{\tau}_{\alpha}\|_{\alpha'} \leq C |x-y|^{\alpha-\alpha'} \|\boldsymbol{\tau}_{\alpha}\|.$$

We say that $\Pi_x, x \in \mathbb{R}^d$, realizes an element of T as a distribution on \mathbb{R}^d .

Skorohod integral

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a complete probability space such that there exists a 1D standard Brownian motion $W = (W(t))_{t\geq 0}$ on it, provided with the filtration $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$ generated by W, and fix also $T \in \mathbb{R}^*_+$.

For any $n \in \mathbb{N}^*$, the *n*-fold iterated or multiple Itô integral (w.r.t. W) of a symmetric function f in $L^2_{n,T} \coloneqq L^2([0,T]^n;\mathbb{R})$ is the random variable in $L^2(\mathbf{P}) \coloneqq L^2((\Omega,\mathcal{F},\mathbf{P});\mathbb{R})$ computed as

$$I_n(f) \doteq \int_{[0,T]^n} f(t_1,\ldots,t_n) \,\mathrm{d}W(t_1)\cdots \,\mathrm{d}W(t_n).$$

We remark that $I_n(f)$ is \mathcal{F}_T -measurable with $\mathbf{E}[I_n(f)] = 0$ and $\mathbf{E}[I_n(f)^2] = n! ||f||_{L^2_n T}^2$.

Theorem (Wiener-Itô chaos expansion). Let $X \in L^2(\mathbf{P})$ be \mathcal{F}_T -measurable. Then there exists an (essentially) unique sequence $(f_n)_{n \in \mathbb{N}^*}$ of symmetric functions f_n in $L^2_{n,T}$ such that, as limit in $L^2(\mathbf{P})$,

$$X = \mathbf{E}[X] + \sum_{n=1}^{\infty} I_n(f_n)$$

Furthermore, $\mathbf{E}[X^2] = \mathbf{E}[X]^2 + \sum_{n=1}^{\infty} n! ||f_n||_{L^2_{n,T}}^2$.

Now let $u = (u(t))_{t=0}^{T}$ be a 1D (stochastic) process such that, for any $t \in [0,T]$, $u(t) \in L^{2}(\mathbf{P})$ is \mathcal{F}_{T} -measurable, and therefore let $(f_{n}(\cdot,t))_{n\in\mathbb{N}^{*}}$ be the sequence of symmetric functions $f_{n}(\cdot,t)$ in $L^{2}_{n,T}$ which determine the Wiener-Itô chaos expansion of u(t). Consider, for any $n \in \mathbb{N}^{*}$, the symmetrization $\tilde{f}_{n} \in L^{2}_{n+1,T}$ of $f_{n}(\cdot,t)$ as a $L^{2}_{n+1,T}$ -function defined on $[0,T]^{n} \times [0,T]_{t}$: for $t_{1},\ldots,t_{n},t \in [0,T]$,

$$\widetilde{f}_n(t_1,\ldots,t_n,t) = \frac{1}{n+1} \left\{ f_n(t_1,\ldots,t_n,t) + \sum_{j=1}^n f_n(t_1,\ldots,t_{j-1},t,t_{j+1},\ldots,t_n,t_j) \right\}.$$

Let's assume also that $\mathbf{E}\left[\int_0^T u^2(t) dt\right] < \infty$. Then u is Skorohod integrable (w.r.t. W) if the series

$$\int_0^T u(t) \,\delta W(t) \coloneqq \delta(u) \doteq \sum_{n=0}^\infty I_{n+1}(\widetilde{f}_n)$$

converges in $L^2(\mathbf{P})$ and, in such a case, $u \in \text{Dom } \delta$ and $\delta(u)$ is the Skorohod integral of u (w.r.t. W).

Seeing δ as an operator from Dom δ into $L^2(\mathbf{P})$, called the *divergence operator*, δ results an unbounded and closed linear operator with, for $u \in \text{Dom }\delta$, $\mathbf{E}[\delta(u)] = 0$ and $\mathbf{E}[\delta(u)^2] = \sum_{n=0}^{\infty} (n+1)! \|\tilde{f}_n\|_{L^2_{n+1}T}^2$.

Theorem. Let $u = (u(t))_{t=0}^T$ be a 1D process which is $(\mathcal{F}_t)_{t=0}^T$ -adapted with $\mathbf{E}\left[\int_0^T u^2(t) dt\right] < \infty$. Then u is Skorohod integrable and its Skorohod integral coincides with its Itô integral (w.r.t. W):

$$\delta(u) = \int_0^T u(t) \, \mathrm{d}W(t).$$

Keep in mind that in general, for arbitrary $u \in \text{Dom } \delta$ and $\zeta \colon \Omega \to \mathbb{R}$ random variable which is \mathcal{F}_T -measurable and such that $\zeta u \coloneqq (\zeta u(t))_{t=0}^T \in \text{Dom } \delta$, then $\delta(\zeta u) \neq \zeta \delta(u)$.

Wick product

A rapidly decreasing (smooth) function on \mathbb{R}^d is a function $\varphi \in C^{\infty}(\mathbb{R}^d; \mathbb{R})$ such that, for any $n \in \mathbb{N}$ and $k \in \mathbb{N}^d$, $\|\varphi\|_{n,k} \doteq \sup_{x \in \mathbb{R}^d} |x|^n |D^k \varphi(x)| < \infty$. The space of the rapidly decreasing functions on \mathbb{R}^d is the Schwartz space (w.r.t. d), is denoted by $S_d \coloneqq S(\mathbb{R}^d) \subset L_d^2$ and is flanked by the topology induced by the countable family of seminorms $\|\cdot\|_{n,k}$ which makes it a Fréchet space (so complete and locally convex T_2 topological metrizable vector space). A tempered or slowly increasing distribution on \mathbb{R}^d is a function from S_d into \mathbb{R} which is linear and (sequentially) continuous w.r.t. that topology on S_d . The space of the tempered distributions on \mathbb{R}^d is then the dual space $S'_d \coloneqq (S_d)' \subset \mathcal{D}'_d$ of S_d and is coupled with the weak-star topology. As far as d = 1, we omit the subscript d from each of the spaces above.

Theorem (Bochner-Minlos-Sazonov). There exists a complete probability measure **P** defined on the Borel σ -algebra \mathcal{F} on $\Omega \coloneqq \mathcal{S}'$ such that, for every $\varphi \in \mathcal{S}$,

$$\int_{\Omega} e^{i\langle\omega;\varphi\rangle} \mathbf{P}(\mathrm{d}\omega) = \exp\left(-\frac{1}{2} \|\varphi\|_{L^2}^2\right).$$

We name **P** the white noise probability measure and $(\Omega, \mathcal{F}, \mathbf{P})$ the white noise probability space. The (smoothed) white noise process is the map $w :: L^2 \to L^2(\mathbf{P})$ identified by placing, for $\varphi \in \mathcal{S}$ and $\omega \in \Omega$,

$$w_{\varphi}(\omega) \coloneqq \langle \omega; \varphi \rangle$$

and by using then the $\|\cdot\|_{L^2}$ -density of \mathcal{S} in L^2 . Note that w is a linear isometry between Hilbert spaces.

Starting from w, one could easily construct a 1D standard Brownian motion $W = (W(t))_{t \in \mathbb{R}}$ on Ω (**P**-a.s. null for negative times) in such a way that, for any $f \in L^2$,

$$w_f = \int_{\mathbb{R}} f(t) \,\mathrm{d}W(t)$$

which is a Wiener-Itô integral on \mathbb{R} . Let's settle $\mathbb{F} = (\mathcal{F}_t)_{t \in \mathbb{R}}$ as the filtration generated by W.

For $n \in \mathbb{N}$, let $H_n \in \mathbb{R}[x; n]$ be the *n*-th Hermite polynomial (on \mathbb{R}), which is the *n*-th coefficient in $x \in \mathbb{R}$ of the series expansion in powers of $t \in \mathbb{R}$ of the smooth function $(t, x) \mapsto \exp(tx - t^2/2)$, namely

$$H_n(x) = \frac{(-1)^n}{n!} e^{x^2/2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} e^{-x^2/2}$$

and let $(\varphi_n)_{n \in \mathbb{N}^*}$ be the orthonormal basis of L^2 consisting of the Hermite functions: for any $x \in \mathbb{R}$,

$$\varphi_n(x) = \pi^{-1/4} (n-1)!^{-1/2} e^{-x^2/2} H_{n-1}(\sqrt{2}x).$$

Indicate with $\Lambda = (\Lambda, +)$ the space of the multi-indices, i.e. the sequences $k = (k_n)_{n \in \mathbb{N}^*}$ in \mathbb{N} with $k_n \neq 0$ only for a finite number $\ell(k)$ of them, and by the way set: $|k| = \sum_{n=1}^{\infty} k_n$, $k! = \prod_{n=1}^{\infty} k_n!$, $0 \coloneqq (0)_{n \in \mathbb{N}^*}$ and, for $j \in \mathbb{N}^*$, $\delta_{(j)} \coloneqq (\delta_{j,n})_{n \in \mathbb{N}^*}$. Define, for every $k = (k_n)_{n \in \mathbb{N}^*} \in \Lambda$,

$$\Phi_k \coloneqq \sqrt{k!} \prod_{n=1}^{\infty} H_{k_n}(w_{\varphi_n})$$

and, for $j \in \mathbb{N}^*$, $\Phi_{(j)} \coloneqq \Phi_{\delta_{(j)}} = w_{\varphi_j}$. Then $(\Phi_k)_{k \in \Lambda}$ is an orthonormal basis of L^2 and, for any $t \ge 0$,

$$W(t) = \sum_{j=1}^{\infty} \left(\int_0^t \varphi_j(r) \, \mathrm{d}r \right) \Phi_{(j)}.$$

A Hida test function on Ω is a random variable $X = \sum_{k \in \Lambda} a_k \Phi_k \in L^2(\mathbf{P})$, with $(a_k)_{k \in \Lambda}$ in \mathbb{R} , such that if, for any $k = (k_n)_{n \in \mathbb{N}^*} \in \Lambda$, $(k_{(1)}, \ldots, k_{(\ell(k))})$ denotes the ordered $\ell(k)$ -tuple formed by the non-zero components of k then, for every $p \in \mathbb{R}$,

$$||X||_{(p)}^{2} \coloneqq \sum_{k \in \Lambda} k! a_{k}^{2} \prod_{n=1}^{\ell(k)} (2n)^{pk_{(n)}} < \infty.$$

The space of the Hida test functions on Ω is the *Hida test function space* $(\mathcal{S}) \subset L^2(\mathbf{P})$ and is equipped by the projective topology induced by the family of norms $\|\cdot\|_{(p)}$. For instance, for any $t \in \mathbb{R}$, $W(t) \in (\mathcal{S})$.

A Hida distribution on Ω is a formal series $Y = \sum_{k \in \Lambda} b_k \Phi_k$, with $(b_k)_{k \in \Lambda}$ in \mathbb{R} and where $\mathbf{E}[Y] \coloneqq b_0$ is named the generalized expectation of Y, such that there exists $q \in \mathbb{R}$ for which

$$\|Y\|_{(-q)}^2 \coloneqq \sum_{k \in \Lambda} k! b_k^2 \prod_{n=1}^{\ell(k)} (2n)^{-qk_{(n)}} < \infty.$$

The space of the Hida distributions on Ω is the *Hida distribution space* and results the dual space $(\mathcal{S})' \supset L^2(\mathbf{P})$ of (\mathcal{S}) with $\langle Y; X \rangle = \sum_{k \in \Lambda} k! a_k b_k$. Here the ω -pointwise product does not make sense.

The singular (t-pointwise) white noise on Ω is given by, for any $t \in \mathbb{R}$, the distributional derivative $\dot{W}(t) \in (\mathcal{S})'$ taken in $(\mathcal{S})'$ of W(t) and thus, equivalently,

$$\dot{W}(t) = \sum_{j=1}^{\infty} \varphi_j(t) \Phi_{(j)}.$$

Well, for every $X = \sum_{k \in \Lambda} a_k \Phi_k$ and $Y = \sum_{k \in \Lambda} b_k \Phi_k$ in $(\mathcal{S})'$, the Wick product $X \diamond Y$ of X and Y is the Hida distribution on Ω defined as

$$X \diamond Y \doteq \sum_{k \in \Lambda} \left(\sum_{\alpha + \beta = k} a_{\alpha} b_{\beta} \right) \Phi_k$$

The Wick algebra obeys the rules of an ordinary algebra, even together with the operation of sum, while caution is required about combining it with the ordinary product: in general, for arbitrary $X, Y, Z \in (\mathcal{S})'$, $X \cdot (Y \diamond Z) \neq (X \cdot Y) \diamond Z$ (whenever those pointwise products do make sense). Note also that in general, for arbitrary $X, Y \in L^2(\mathbf{P})$, $X \diamond Y \notin L^2(\mathbf{P})$ but, if $X, Y \in (\mathcal{S})$, then $X \diamond Y \in (\mathcal{S})$ as well.

A map $Y : \mathbb{R}_t \to (\mathcal{S})'$ is said $(\mathcal{S})'$ -integrable if, for every $X \in (\mathcal{S}), \langle Y(\cdot); X \rangle \in L^1 := L^1(\mathbb{R}; \mathbb{R})$ and, in such a case, there exists an unique Hida distribution on Ω , the $(\mathcal{S})'$ -integral $\int_{\mathbb{R}} Y(t) dt$ of Y, with

$$\left\langle \int_{\mathbb{R}} Y(t) \, \mathrm{d}t; X \right\rangle = \int_{\mathbb{R}} \langle Y(t); X \rangle \, \mathrm{d}t.$$

We remark that, if $Y(\cdot)$ is $(\mathcal{S})'$ -integrable then, for any $T \in \mathbb{R}^*_+$, $Y(\cdot)\mathbb{1}_{[0,T]}(\cdot)$ remains $(\mathcal{S})'$ -integrable and we write $\int_0^T Y(t) dt := \int_{\mathbb{R}} (Y(t)\mathbb{1}_{[0,T]}(t)) dt$.

Theorem. Fix $T \in \mathbb{R}^*_+$ and take $u = (u(t))_{t=0}^T \in \text{Dom } \delta$ as a process on Ω . Then, for any $t \in [0, T]$, $u(t) \diamond \dot{W}(t)$ is $(\mathcal{S})'$ -integrable and its $(\mathcal{S})'$ -integral coincides with the Skorohod integral of u (w.r.t. W):

$$\int_0^T u(t) \diamond \dot{W}(t) \, \mathrm{d}t = \int_0^T u(t) \, \delta W(t) \in L^2(\mathbf{P}).$$

For any map $Y : \mathbb{R}_t \to (\mathcal{S})'$ such for which $Y(\cdot) \diamond \dot{W}(\cdot)$ is $(\mathcal{S})'$ -integrable, $\int_{\mathbb{R}} Y(t) \diamond \dot{W}(t) dt$ is the generalized Skorohod integral of Y.

An entire construction like all that could be made in a very more general way and furthermore, anyhow, it could be genuinely connected to the Wiener-Itô chaos expansion.

Rough volatility

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a complete probability space such that there exists a 2D standard Brownian motion $(W, \overline{W}) = ((W(t), \overline{W}(t)))_{t \in \mathbb{R}}$ on it (**P**-a.s. null for negative times) and fix $T \in \mathbb{R}^*_+$.

On the one hand put $\rho \in [-1, 1] \setminus \{0\}$, $\overline{\rho} \coloneqq \sqrt{1 - \rho^2}$ and produce the 1D standard Brownian motion $B = (B(t))_{t \in \mathbb{R}}$ on Ω defining its trajectories, for any $t \in \mathbb{R}$, as $B(t) \coloneqq \rho W(t) + \overline{\rho} \overline{W}(t)$ in such a way that B and W have constant correlation $\rho \neq 0$. Assign to Ω the filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in \mathbb{R}}$ generated by B.

On the other hand choose a Hurst index $H \in [0, 1/2[$, take the Volterra kernel K on \mathbb{R}^2_+ given by, for any $s, t \ge 0$, K(s, t) := K(t - s) where, for any $r \in \mathbb{R}$,

$$\mathbf{K}(r) \coloneqq \sqrt{2H} \, |r|^{H-1/2} \, \mathbb{1}_{\mathbb{R}_+}(r)$$

and consider the 1D fractional Riemann-Liouville Brownian motion $\widehat{W} = (\widehat{W}(t))_{t \in \mathbb{R}}$ on Ω of index Hand Volterra dynamics based on W having trajectories, for any $t \in \mathbb{R}$,

$$\widehat{W}(t) \coloneqq \int_0^t \mathcal{K}(t-s) \, \mathrm{d}W(s).$$

We remark that \widehat{W} is a continuous Gaussian process with negatively correlated increments and locally H^- -Hölder continuous trajectories, i.e. of any order strictly smaller than H and thus rougher than Brownian paths, which is a local martingale independent of \overline{W} that admits quadratic variation (by virtue of the classical Burkholder-Davis-Gundy inequality).

Fixed $f \in C^1(\mathbb{R}; \mathbb{R}_+)$, a *(simple) rough volatility* process $\sigma = (\sigma(t))_{t \ge 0}$ on Ω is explicitly given by

$$\sigma(t) \coloneqq f(\widehat{W}(t)), \ t \ge 0$$

meaning it indeed as the volatility process corresponding to the stochastic volatility Itô model

$$\begin{cases} \mathrm{d}S(t)/S(t) = \sigma(t)\mathrm{d}B(t), \ t \ge 0, \\ S(0) \neq 0 \ [\mathbf{P}]. \end{cases}$$

We're in the presence of a singular SDE due to the roughness of σ in the sense that, as σ is not even a semi-martingale, in particular it admits no Stratonovich form, closely related to which the absence of Markovianity of the model – although $S = (S(t))_{t\geq 0}$ remains a local martingale – and the lack of a Wong-Zakai type approximation theory for that (and consequently the loss of hope in a successful use of the well-known tools and methods for SDEs).

We submit hereunder a regularity structure for σ which would be the basis for solving the above issues basically providing an approximation theory for stochastic integrals of type

$$\int f(\widehat{W}) \,\mathrm{d}W.$$

Our task is to build an analysis à la Hairer based on renormalized enhanced noise, incorporating and keeping track of the relevant things we've in mind, so dealing with a mix of even hard algebraic-analytical conditions and, as usual in this area, with the problem of discovering the "right" approximation of the noise and therefore the renormalized approximating models.

Well, employed $\kappa \in [0, H[$ and $M = M(H, \kappa) := \max\{m \in \mathbb{N} \mid m(H - \kappa) - 1/2 - \kappa \leq 0\} \in \mathbb{N}^*$, define, always depending on M, the index set

$$A \coloneqq \{-1/2 - \kappa, (H - \kappa) - 1/2 - \kappa, \dots, M(H - \kappa) - 1/2 - \kappa, 0, H - \kappa, \dots, M(H - \kappa)\}$$

and the symbols set

$$S \coloneqq \left\{ \Xi, \Xi \mathcal{I}(\Xi), \dots, \Xi \mathcal{I}(\Xi)^M, \mathbf{1}, \mathcal{I}(\Xi) \dots, \mathcal{I}(\Xi)^M \right\}$$

attaching to every symbol τ in S a homogeneity $|\tau|$ in A as follows: $|\mathbf{1}| \coloneqq 0$, $|\Xi| \coloneqq -1/2 - \kappa$ and, for $m = 1, \ldots, M$, $|\Xi \mathcal{I}(\Xi)^m| \coloneqq m(H - \kappa) - 1/2 - \kappa$ and $|\mathcal{I}(\Xi)^m| \coloneqq m(H - \kappa)$. By reading powers of symbols as products with themselves, we see that homogeneities are multiplicative.

Of course Ξ should be interpreted as an abstract representation of the white noise ξ belonging to W, that is $\xi = \dot{W}$ in the distributional sense; while $\mathcal{I}(\cdot)$ has the intuitive meaning of integration against the Volterra kernel, improperly speaking, and in particular $\mathcal{I}(\Xi)$ would perform \widehat{W} .

So let $\mathcal{T} \coloneqq \bigoplus_{\tau \in S} \langle \tau \rangle$ be the model space and $G \coloneqq \{ \Gamma_h \mid h \in (\mathbb{R}, +) \}$ be the structure group where

$$\Gamma_h \mathbf{1} \coloneqq \mathbf{1}, \ \Gamma_h \Xi \coloneqq \Xi, \ \Gamma_h \mathcal{I}(\Xi) \coloneqq \mathcal{I}(\Xi) + h \mathbf{1} \text{ and } \Gamma_h \boldsymbol{\tau} \cdot \boldsymbol{\tau'} \coloneqq \Gamma_h \boldsymbol{\tau} \cdot \Gamma_h \boldsymbol{\tau'} \text{ for } \boldsymbol{\tau}, \boldsymbol{\tau'} \in S \text{ with } \boldsymbol{\tau} \cdot \boldsymbol{\tau'} \in S$$

then extending to \mathcal{T} by linearity and getting that the triple $\mathscr{T} = (A, \mathcal{T}, G)$ is a regularity structure (also thanks to the basic binomial theorem which will serve throughout the continuation).

With the aim of building an appropriate limiting Itô model $\mathbf{M} = (\Pi, \Gamma)$ for \mathscr{T} (on \mathbb{R}) based on ξ , for $m = 1, \ldots, M$ we give a meaning to the terms $\Xi \mathscr{I}(\Xi)^m$ by defining an iterated Itô integral \mathbb{W}^m of second order so that it constitutes somehow a kind of its primitive (the context, for the moment, is too irregular to simply propose a product): for $s, t \in \mathbb{R}$ with $s \leq t$,

$$\mathbb{W}^m(s,t) \coloneqq \int_s^t \left(\widehat{W}(r) - \widehat{W}(s)\right)^m \mathrm{d}W(r).$$

By osserving that this process satisfies **P**-a.s. the pseudo Chen's relation, for $s, u, t \in \mathbb{R}$ with $s \leq u \leq t$,

$$\mathbb{W}^{m}(s,t) = \mathbb{W}^{m}(s,u) + \sum_{l=0}^{m} \binom{m}{l} \left(\widehat{W}(u) - \widehat{W}(s)\right)^{l} \mathbb{W}^{m-l}(u,t)$$

we extend \mathbb{W}^m to \mathbb{R}^2 just by imposing that useful relation for every $s, u, t \in \mathbb{R}$: for $s, t \in \mathbb{R}$ with t < s,

$$\mathbb{W}^m(s,t) \coloneqq -\sum_{l=0}^m \binom{m}{l} \left(\widehat{W}(t) - \widehat{W}(s)\right)^l \mathbb{W}^{m-l}(t,s).$$

Lemma. For m = 1, ..., M there exists a version of \mathbb{W}^m , for which we keep its symbol, and there exists $p \in [1, \infty[$ such that, for any $K \in \mathcal{K}$, there exists a random positive t-constant $C_K \in L^p(\mathbf{P})$ such that, for any $s, t \in K$ (and \mathbf{P} -a.s.),

$$|\mathbb{W}^m(s,t)| \le C_K |s-t|^{m(H-\kappa)+1/2-\kappa}.$$

For $s, t \in \mathbb{R}$ and $m = 1, \ldots, M$ (and **P**-a.s.), define

$$\begin{cases} \Gamma_{t,s} \mathbf{1} \coloneqq \mathbf{1} \\ \Gamma_{t,s} \Xi \coloneqq \Xi \\ \Gamma_{t,s} \mathcal{I}(\Xi) \coloneqq \mathcal{I}(\Xi) + (\widehat{W}(t) - \widehat{W}(s)) \mathbf{1} \\ \Gamma_{t,s} \tau \cdot \tau' \coloneqq \Gamma_{t,s} \tau \cdot \Gamma_{t,s} \tau' \text{ when } \tau \cdot \tau' \in S \end{cases} \text{ and } \begin{cases} \Pi_s \mathbf{1} \coloneqq \mathbf{1} \\ \Pi_s \Xi \coloneqq \dot{W} \\ \Pi_s \mathcal{I}(\Xi)^m \coloneqq (\widehat{W}(\cdot) - \widehat{W}(s))^n \\ \Pi_s \Xi \mathcal{I}(\Xi)^m \coloneqq (\widehat{W}^m(s, \cdot)) \end{cases}$$

then extending to \mathcal{T} by linearity.

Proposition. The pair $M = (\Pi, \Gamma)$, where $\Gamma = (\Gamma_{t,s})_{t,s \in \mathbb{R}}$ and $\Pi = (\Pi_s)_{s \in \mathbb{R}}$, is (**P**-a.s.) a model for \mathscr{T} .

The next goal is to find, for $\varepsilon \downarrow 0$, a reasonable approximating model $M^{\varepsilon} = (\Pi^{\varepsilon}, \Gamma^{\varepsilon})$ for \mathscr{T} of M, to be renormalized, relying on a smart approximation \dot{W}^{ε} of ξ (as distributions). About this, let's consider a function $\delta^{\varepsilon} \colon \mathbb{R}^2_{(x,y)} \to \mathbb{R}$, which should be understood as an approximation of the Dirac delta and which could be easily built from a mollifier as well as a wavelet basis, with the following properties.

* The function δ^{ε} is measurable, symmetric and bounded with $\|\delta^{\varepsilon}\|_{\infty} = \mathcal{O}(\varepsilon^{-1})$.

* There exists $\beta \in [1/2 + \kappa, \infty[$ such that, for any $x \in \mathbb{R}$, the function $\delta^{\varepsilon}(x, \cdot) : \mathbb{R}_y \to \mathbb{R}$ belongs to the Besov space $\mathcal{B}_{1,\infty}^{\beta}(\mathbb{R})$ and $x \mapsto \delta^{\varepsilon}(x, \cdot)$ is measurable and bounded as a map from \mathbb{R}_x into $\mathcal{B}_{1,\infty}^{\beta}(\mathbb{R})$.

* There exists $c \in [0, \infty[$ such that, for any $x \in \mathbb{R}$, supp $\delta^{\varepsilon}(x, \cdot) \subset B_{c\varepsilon}(x)$ with $\int_{\mathbb{R}} \delta^{\varepsilon}(x, y) \, dy = 1$.

Indeed \dot{W} turns out to be locally contained in $\mathcal{B}_{\infty,\infty}^{-1/2-\kappa}(\mathbb{R}) \subset (\mathcal{B}_{1,\infty}^{\beta}(\mathbb{R}))'$ and therefore we define the approximation $\dot{W}^{\varepsilon} \coloneqq (\dot{W}^{\varepsilon}(t))_{t \in \mathbb{R}}$ of ξ , a Gaussian pathwise measurable locally bounded process, as

$$\dot{W}^{\varepsilon}(t) \coloneqq \left\langle \dot{W}; \delta^{\varepsilon}(t, \cdot) \right\rangle \mathbb{1}_{\mathbb{R}_{+}}(t).$$

For 1D stochastic process $u = (u(t))_{t=0}^T$ on Ω and $t \in \mathbb{R}_+$, we write

$$\int_0^t u(r) \, \mathrm{d} W^\varepsilon(r) \coloneqq \int_0^t u(r) \dot{W}^\varepsilon(r) \, \mathrm{d} r$$

while, if u takes values in some non-homogeneous Wiener chaos induced by W, we write

$$\int_0^t u(r) \diamond \, \mathrm{d} W^{\varepsilon}(r) \coloneqq \int_0^t u(r) \diamond \, \dot{W}^{\varepsilon}(r) \, \mathrm{d} r.$$

In particular, we consider the approximation $\widehat{W}^{\varepsilon} \coloneqq (\widehat{W}^{\varepsilon}(t))_{t \in \mathbb{R}}$ of $\widehat{W}^{\varepsilon}$ as

$$\widehat{W}^{\varepsilon}(t) \coloneqq \mathbf{K} * \dot{W}^{\varepsilon} = \int_0^t \mathbf{K}(t-r) \, \mathrm{d}W^{\varepsilon}(r).$$

Lemma. For $\varepsilon \downarrow 0$, there exist $p \in [1, \infty[$ and random positive t-constants $C_{\varepsilon,T}, C_T \in L^p(\mathbf{P})$, where are uniformly bounded, such that, for any $s, t \in [0, T]$, $\kappa' \in [0, H[$ and $\delta \in [0, 1]$ (and \mathbf{P} -a.s.),

$$\widehat{W}^{\varepsilon}(t) - \widehat{W}^{\varepsilon}(s) \Big| \le C_{\varepsilon,T} |t-s|^{H-\kappa'} \quad and \quad \left| \widehat{W}^{\varepsilon}(t) - \widehat{W}^{\varepsilon}(s) - \left(\widehat{W}(t) - \widehat{W}(s) \right) \right| \le C_T |t-s|^{H-\kappa'} \varepsilon^{\delta\kappa'}.$$

For $\varepsilon \downarrow 0, s, t \in \mathbb{R}$ and m = 1, ..., M (and **P**-a.s.), define the approximating model for \mathscr{T} of M by

$$\begin{cases} \Gamma_{t,s}^{\varepsilon} \mathbf{1} \coloneqq \mathbf{1} \\ \Gamma_{t,s}^{\varepsilon} \Xi \coloneqq \Xi \\ \Gamma_{t,s}^{\varepsilon} \mathcal{I}(\Xi) \coloneqq \mathcal{I}(\Xi) + \left(\widehat{W}^{\varepsilon}(t) - \widehat{W}^{\varepsilon}(s)\right) \mathbf{1} \\ \Gamma_{t,s}^{\varepsilon} \boldsymbol{\tau} \cdot \boldsymbol{\tau}' \coloneqq \Gamma_{t,s}^{\varepsilon} \boldsymbol{\tau} \cdot \Gamma_{t,s}^{\varepsilon} \boldsymbol{\tau}' \text{ when } \boldsymbol{\tau} \cdot \boldsymbol{\tau}' \in S \end{cases} \text{ and } \begin{cases} \Pi_{s}^{\varepsilon} \mathbf{1} \coloneqq 1 \\ \Pi_{s}^{\varepsilon} \Xi \coloneqq \dot{W}^{\varepsilon} \\ \Pi_{s}^{\varepsilon} \mathcal{I}(\Xi)^{m} \coloneqq \left(\widehat{W}^{\varepsilon}(\cdot) - \widehat{W}^{\varepsilon}(s)\right)^{m} \\ \Pi_{s}^{\varepsilon} \Xi \mathcal{I}(\Xi)^{m} \coloneqq \dot{W}^{\varepsilon}(\cdot) \left(\widehat{W}^{\varepsilon}(\cdot) - \widehat{W}^{\varepsilon}(s)\right)^{m} \end{cases}$$

(extending then to \mathcal{T} by linearity).

Proposition. The pair $M^{\varepsilon} = (\Pi^{\varepsilon}, \Gamma^{\varepsilon})$, where $\Gamma^{\varepsilon} = (\Gamma^{\varepsilon}_{t,s})_{t,s\in\mathbb{R}}$ and $\Pi^{\varepsilon} = (\Pi^{\varepsilon}_{s})_{s\in\mathbb{R}}$, is a model for \mathscr{T} .

In order to understand the diverging quantities $\mathscr{C}^{\varepsilon}$ to be subtracted from Π^{ε} to renormalize it in the sense of Hairer, since there cannot be any hope of a convergence like $\int f(\widehat{W}^{\varepsilon}) dW^{\varepsilon}$ to $\int f(\widehat{W}) dW$, what's below is enlightening. Before, given 1D Gaussians U_1, V, U_2 on Ω and $l, h \in \mathbb{N}^*$ with $l \leq h$,

$$U_1^l \cdot (V \diamond U_2^{h-l}) = V \diamond (U_1^l U_2^{h-l}) + l \mathbf{E}[V U_1] U_1^{l-1} U_2^{h-l}$$

Lemma. For any $\varphi \in \mathcal{D}$, $s \in \mathbb{R}$, $m = 1, \ldots, M$ and $\varepsilon \downarrow 0$, the two following identities hold.

1.
$$\Pi_{s} \Xi \mathcal{I}(\Xi)^{m}(\varphi) = \int_{0}^{\infty} \varphi(t) \big(\widehat{W}(t) - \widehat{W}(s)\big)^{m} \delta W(t) - m \int_{0}^{s} \varphi(s) \mathrm{K}(s-r) \big(\widehat{W}(r) - \widehat{W}(s)\big)^{m-1} \mathrm{d}r.$$

2. Defined $\mathscr{K}^{\varepsilon}(s, \cdot) \coloneqq \mathbf{E}\big[\widehat{W}^{\varepsilon}(s) \dot{W}^{\varepsilon}(\cdot)\big] = \mathbb{1}_{\mathbb{R}^{2}_{+}}(s, \cdot) \int_{0}^{\infty} \int_{0}^{\infty} \delta^{\varepsilon}(\cdot, x) \delta^{\varepsilon}(x, y) \mathrm{K}(s-y) \, \mathrm{d}x \mathrm{d}y, \text{ then}$

$$\Pi_{s}^{\varepsilon} \Xi \mathcal{I}(\Xi)^{m}(\varphi) = \int_{0}^{\infty} \varphi(t) \left(\widehat{W}^{\varepsilon}(t) - \widehat{W}^{\varepsilon}(s)\right)^{m} \diamond \, \mathrm{d}W^{\varepsilon}(t) \\ - m \int_{0}^{\infty} \varphi(t) \left[\mathscr{K}^{\varepsilon}(s,t) - \mathscr{K}^{\varepsilon}(t,t)\right] \left(\widehat{W}^{\varepsilon}(t) - \widehat{W}^{\varepsilon}(s)\right)^{m-1} \mathrm{d}t$$

Furthermore, assuming $s \leq T$, there exists $C_T \in \mathbb{R}^*_+$ such that, for any $t \in [0,T]$,

$$|\mathscr{K}^{\varepsilon}(s,t)| \leq C_T \varepsilon^{H-1/2}$$

As a corollary, if we interpret $\mathscr{K}^{\varepsilon}$ as an approximation of the kernel K, then we see that

$$\mathscr{C}^{\varepsilon}(t) \coloneqq \mathscr{K}^{\varepsilon}(t,t), \quad t \ge 0$$

would correspond to something diverging like " $0^{H-1/2} = \infty$ " in the limit $\varepsilon \downarrow 0$.

Theorem. For $\varepsilon \downarrow 0$, $s \in \mathbb{R}$ and $m = 1, \ldots, M$ (and **P**-a.s.), define

$$\widehat{\Pi}_{s}^{\varepsilon} \Xi \mathcal{I}(\Xi)^{m} \coloneqq \Pi_{s}^{\varepsilon} \Xi \mathcal{I}(\Xi)^{m} - m \mathscr{C}^{\varepsilon}(\,\boldsymbol{\cdot}\,) \Pi_{s}^{\varepsilon} \mathcal{I}(\Xi)^{m-1}$$

leaving $\widehat{\Pi}_{s}^{\varepsilon}\boldsymbol{\tau} \coloneqq \Pi_{s}^{\varepsilon}\boldsymbol{\tau}$ on the remaining symbols $\boldsymbol{\tau} \in S$. Then the pair $\widehat{M}^{\varepsilon} = (\widehat{\Pi}^{\varepsilon}, \Gamma^{\varepsilon})$, where $\widehat{\Pi}^{\varepsilon} = (\widehat{\Pi}_{s}^{\varepsilon})_{s=0}^{T}$, is a model for \mathscr{T} and there exists $C_{T} \in \mathbb{R}_{+}^{*}$ such that, for any $p \in [1, \infty[$ and $\delta \in]0, 1[$,

$$\left\| \left\| \left\| \widehat{\mathbf{M}}^{\varepsilon}; \mathbf{M} \right\| \right\|_{T} \right\|_{L^{p}(\mathbf{P})} \leq C_{T} \varepsilon^{\delta \kappa}$$

where of course, for any model $\widetilde{M} = (\widetilde{\Pi}, \widetilde{\Gamma})$ for \mathscr{T} on \mathbb{R} ,

$$\begin{split} \left| \left| \left| \widetilde{\mathbf{M}} \right| \mathbf{M} \right| \right|_{T} &\doteq \sup \left\{ \left| \left(\Pi_{s} - \widetilde{\Pi}_{s} \right) \boldsymbol{\tau}(\varphi_{s}^{\lambda}) \right| \lambda^{-|\boldsymbol{\tau}|} \ \left| \ \varphi \in \mathcal{D}_{1}, \lambda \in \left] 0, 1 \right], s \in [0, T], \boldsymbol{\tau} \in S \right. \right\} \\ &+ \sup \left\{ \left\| \Gamma_{t,s} \boldsymbol{\tau} - \widetilde{\Gamma}_{t,s} \boldsymbol{\tau} \right\|_{\alpha'} |t - s|^{\alpha' - |\boldsymbol{\tau}|} \ \left| \ t, s \in [0, T], \boldsymbol{\tau} \in S, \alpha' \in A \text{ with } \alpha' < |\boldsymbol{\tau}| \right\}. \end{split}$$

Starting reference

[1] C. Bayer, P. K. Friz, P. Gassiat, J. Martin, B. Stemper. A regularity structure for rough volatility. Mathematical Finance (2019), pp. 1–51.