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Holder distributions

Consider d € N*=N\ {0} and R? = R%, x = (z1,...,24), equipped by the Euclidean topology and
the Borel o-algebra B(R?) with the Lebesgue measure on it. We denote by ICg the subclass of B(RY)
consisting of the compact subsets K of R? and, for p € R% =10,00] and = € R?, by B,(x) the open ball
in R? of radius p and center 2. Whenever z = 0, we write B, = B,(0).

A smooth test or bump function on R? is a function ¢: R* — R which is infinitely differentiable and
compactly supported. The space of the test functions on R? is denoted by Dy := D(R?) = C>*(R%; R)
and it’s associated to the topology induced by the following uniform convergence notion: given ¢, (¢n),,
in Dy, ¢, — @ in Dy as n — oo if there exists K € Ky with supp ¢ U supp ¢, C K for n large enough
and, for any multi-index k = (ki,.. ., kq) € N%, |[DFp —D¥pp|loc — 0 as n — oo, where DF = 1. . . gk
and | - || is the usual uniform norm. Thereby, D; is a complete and locally convex topological not
metrizable (real) vector space satisfying the so-called Heine-Borel property. For r € N*, we denote

Diy ={¢€Dy|suppy C By and |p|lcr <1}

where || ||cr = maneNd,|k|§r||Dk' lloo and |k| = k1 + -+ + kq.

A Schwartz distribution or generalized function on R is a function n: D; — R which is linear
and (sequentially) continuous w.r.t. the above topology on D;. The space of the distributions on R?
is therefore the dual space of Dy, in symbols Dj := (D;)’, and as such it’s paired with the weak-star
topology induced by this pointwise convergence notion: given 7, (1,,),, in Dg, n, — 1 in Dg as n — 00
if, for any ¢ € Dy, () — n(p) (in R) as n — oco. Hence, Dy is a locally convex topological not
metrizable vector space. For n € Dj and ¢ € Dy, we write (n; ) = n(p).

Every function f € L (R%R) is identified with the distribution (on R?) defined by ¢ — [;4 fe dz,
¢ € Dy, and w.r.t. that standpoint D results a weak-star dense subset of Dj. Even every Radon (tight)
measure g on B(RY) is viewed as a distribution, that given by ¢ Jga @ p(dx), ¢ € Dy.

For n € D} and k € N%, the (distributional) derivative D¥n € Dj of order k of 1 takes values

(DFn;0) = (-1)*(n;DFy), e

For ¢ € Dy, A €]0,1] and z € R?, the scaled function 4,0;\ € D; is constructed from ¢ reducing it by
factor A and centering it at point = without changing its integral on R%:

P () =AM — ).

Whenever z = 0, we write ¢ = cpé‘. Note that, if ¢ € D;, for r € N* then supp gpg‘ C By.(x) and
l@d|cr < A™". Moreover, for any k € N¢, D¥p = \~IFl(DF )2,
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For @ € Ry = [0,00][, if a ¢ N then, leaning on the concept of (locally) Holder continuous function,
the space of a-Hdélder functions on R is defined as

C = C*(R%R) = {f e Cl(RER) |V &k € NY with |k| = |of, D*f € cl{g“j(md;ma)}
whereas, for o € R_ = ]—00,0], if a ¢ Z then the space of a-Hdélder distributions on R is defined as

o = {nepg VK €Ky 3Ck RV 0 €Dy, A€]0, 1] andz € K, [(n; )] chAa}

and finally, for » € N*, the space of Hélder distributions of finite order r on R® is defined as
C;":={neDj|ristheminof s € N*s.t., VK € Kq, ICx € R} : ¥V p € Dy, [(n;0)] < Crllellcs}-

Every distribution in C; " is canonically definable on C; (RZ;R) (through a continuity standard argument).

Observe that, for any o, f € R\ N, if a < § then Cdﬂ C Cf'. Moreover, for any k € N, Dk(CC‘l)‘) C C;FW.
Remember the main issues about the operation of product between distributions, summarized by

the Schwartz impossibility theorem, and yet the importance of Holder distributions regarding that.
As far as d = 1, we omit the subscript d from each of the previously defined spaces.

Regular wavelets

For n € N, we denote by Rd[:v; n] the class of the real polynomials on R? = ]Rg of degree n.
Theorem (Daubechies, ’88). Given r € N, there exists ¢: RY — R with the following properties.
1. The function ¢ is of class G and has compact support.
2. For every P € R%x;r], there exists P € R¥z;r] such for which P(+) = Y hezd P(h)o(-—h).
3. For any h € 2%, [pa o(x)p(x — h) dz = bp.
4. There exists a sequence (ap)peza in R such that, for any x € RY, 2-42p(2/2) = Y ohezd ane(x —h).

The existence of such a function ¢ is equivalent to the existence of a wavelet basis of L2 = L? (R4 R)
consisting of || || rz-orthonormal G functions with compact support (proceeding according to the
wavelet standard analysis of Meyer, 92). Indeed, given r € N* and taken ¢ as in the previous theorem,
for n € N we set A" := 27"Z% and, for any ¢ € CT(R%R) and y € A", Yy () = 2m4/24p(27(« — 3)).
Then there exists ® C C'(R%R) with |®| = #® < oo which is orthogonal to R%[z;r] and such that
{o)}yezaU{P}  pednen yean constitutes an orthonormal basis of L7 (intimately related to C; ... ).

Regularity structures
A regularity structure is a triple 7 = (A, T, G) made by the following three elements.

e An inder set A: a subset of R with 0 € A which is bounded from below and locally finite.

o A model space T a graded vector space indexed over A of finite-dimensional vector spaces Ty, o € A,
each of which admits basis of symbols {Ta,i}icr,, [la] < 00, ie. T = PocaTa = Bpca (Tasili € La),
where Ty = (1) 2 R. Elements 7, € T, a € A, are said to have homogeneity or degree |1,| equal to a.
Given 7 € T and a € A, we write 7| for a chosen norm || - || of its component in Tg,.

e A structure group G: a o-group of linear operators I' acting on T with I'1 = 1 which satisfy a
nilpotency property in the meaning that, for any a € A and 7, € T,,

I7q —Ta € Teg = EBTO/.

a'<a
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A model for 7 on R? is then a pair M = (II, T') composed of the following two families.
e Amap I'= (I y), yepra: R? x R? — G such that, for any z,y,z € R4, I, oL, , =T, ..

e A map Il = (II;),cpe: RY — L£(T; D)) such that, for any z,y € RY, I, o I, = I, and furthermore,

letting r be the smallest integer > |min A| then, for any v € R% and K € Kg, there exists C = Cy g € R

such that, by varying o € A with o <y, 7o € Ty, ¢ € Dy, A €]0,1], 2,y € K and o/ < «,
[(Ma7a)(22) | < CA%|mal| and [Ty yTaller < Clz—y|*|7al-

We say that II,, € R?, realizes an element of T as a distribution on R

Skorohod integral

Let (Q, F,P) be a complete probability space such that there exists a 1D standard Brownian motion
W = (W(t))i>0 on it, provided with the filtration F = (F;);>0 generated by W, and fix also T" € R .

For any n € N* the n-fold iterated or multiple It6 integral (w.r.t. W) of a symmetric function f in
L%T = L2([0, T]"; R) is the random variable in L?(P) := L%((Q, F,P);R) computed as

D= [ ftne ) AW () W (),
[0, 7"

We remark that I,,(f) is Fr-measurable with E[L,(f)] = 0 and E[I,,(f)?] = n!||f||%2
n,T

Theorem (Wiener-It6 chaos expansion). Let X € L?(P) be Fr-measurable. Then there exists an
(essentially) unique sequence (fy)nen+ of symmetric functions fy, in L%’T such that, as limit in L*(P),

X = E[X] + ZIn(fn)
n=1

Furthermore, B[X?] = E[X >+ "0 n!|| ful%.
n,T
Now let u = (u(t))_, be a 1D (stochastic) process such that, for any ¢ € [0,7], u(t) € L*(P) is
Fr-measurable, and therefore let (f,,(+,t))nen be the sequence of symmetric functions f,(«,t) in L2

which determine the Wiener-It6 chaos expansion of u(t). Consider, for any n € N*, the symmetrization
Jn € L2 4 pof fu(-,t) as a L2 | p-function defined on [0,T]" x [0,T],: for t1,. ..t t € [0,T7],

~ 1 "
Falti, . tn,t) = W{fn(tl, ot ) > falt, ettt ,tn,tj)}.
j=1
Let’s assume also that E[fOTUQ(t) dt] < co. Then u is Skorohod integrable (w.r.t. W) if the series

T i ~
/0 u() W () = 6(uw) = 3 i1 (Fr)
n=0

converges in L*(P) and, in such a case, u € Domd and §(u) is the Skorohod integral of u (w.r.t. W).
Seeing & as an operator from Dom 6 into L?(P), called the divergence operator, & results an unbounded
and closed linear operator with, for u € Domd, E[§(u)] = 0 and E[§(u)?] = Y22 o(n + 1)![| full2-
n+1,T

Theorem. Let u = (u(t)){_, be a 1D process which is (F;){_y-adapted with E| OTu2(t) dt] < oo. Then
u is Skorohod integrable and its Skorohod integral coincides with its Ité integral (w.r.t. W):

T
5(u) = /0 u(t) AW (t).
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Keep in mind that in general, for arbitrary u € Domd and (: 2 — R random variable which is
Fr-measurable and such that (u = ((u(t))_, € Domd, then §(Cu) # ¢5(u).

Wick product

A rapidly decreasing (smooth) function on R? is a function ¢ € C>°(R%; R) such that, for any n € N
and k € N% |||, 1 = sup,era|z|?|DFp(x)] < co. The space of the rapidly decreasing functions on R is
the Schwartz space (w.r.t. d), is denoted by Sy :== S(R?) C L? and is flanked by the topology induced
by the countable family of seminorms || - |, x which makes it a Fréchet space (so complete and locally
convex Ty topological metrizable vector space). A tempered or slowly increasing distribution on R? is a
function from S; into R which is linear and (sequentially) continuous w.r.t. that topology on Sy. The
space of the tempered distributions on R? is then the dual space Sy = (S4)' € Dj of S4 and is coupled
with the weak-star topology. As far as d = 1, we omit the subscript d from each of the spaces above.

Theorem (Bochner-Minlos-Sazonov). There exists a complete probability measure P defined on the
Borel o-algebra F on Q.= 8’ such that, for every ¢ € S,

/ oiwse) P(dw) = exp <—; ||g0\|i2>
Q

We name P the white noise probability measure and (Q, F, P) the white noise probability space. The
(smoothed) white noise process is the map w.: L? — L?(P) identified by placing, for ¢ € S and w € Q,

we(w) = (w3 ¢)

and by using then the || - || 2-density of S in L2 Note that w is a linear isometry between Hilbert spaces.
Starting from w, one could easily construct a 1D standard Brownian motion W = (W (t))cr on Q
(P-a.s. null for negative times) in such a way that, for any f € L%

wy = /R F(t) W (1)

which is a Wiener-It6 integral on R. Let’s settle F = (F;):cr as the filtration generated by W.
For n € N, let H,, € R[z;n| be the n-th Hermite polynomial (on R), which is the n-th coefficient in
z € R of the series expansion in powers of ¢ € R of the smooth function (¢, z) — exp(tx — t/2), namely

(_1)71 z2 d" —z2
Hn(z) = nl © /dene "

and let (¢,,)nen+ be the orthonormal basis of L? consisting of the Hermite functions: for any = € R,
on(@) =7 V4 — )12 "2 H, 1 (V22).

Indicate with A = (A, +) the space of the multi-indices, i.e. the sequences k = (ky)nen+ in N with
kn # 0 only for a finite number ¢(k) of them, and by the way set: |k| = > 07 kyn, k! = [[02 kn!,
0 := (0)nen+ and, for j € N* 0(;y = (0;n)nen+ Define, for every k = (kp)nen+ € A,

o), == VE! [] Healws,)
n=1
and, for j € N, @;y:= ®5,) = wy,. Then (®))ren is an orthonormal basis of L? and, for any ¢ > 0,
o0 t
W(t) = Z(/o ©;(r) dr) D5y
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A Hida test function on () is a random variable X =}, -\ ax®; € L?(P), with (ag)gea in R,
such that if, for any k = (kn)nen € A, (K1), - - -, b x))) denotes the ordered £(k)-tuple formed by the
non-zero components of k£ then, for every p € R,

(k)
||X||(2p) = Z kla3 H (2n)PF0 < oo.
keA n=1

The space of the Hida test functions on (2 is the Hida test function space (S) C L*(P) and is equipped by
the projective topology induced by the family of norms || - [|,). For instance, for any ¢ € R, W (t) € (S).

A Hida distribution on €2 is a formal series Y = 3, _x bp @, with (bg)rea in R and where E[Y] := bg
is named the generalized expectation of Y, such that there exists ¢ € R for which

o(k)
||Y||(2_q) = Z k!b? H (2n)"7F0 < oo,
keA n=1

The space of the Hida distributions on 2 is the Hida distribution space and results the dual space
(8)' > L?(P) of (S) with (Y;X) = 3", klagby. Here the w-pointwise product does not make sense.

The singular (t-pointwise) white noise on € is given by, for any t € R, the distributional derivative
W (t) € (S) taken in (S) of W (t) and thus, equivalently,

W(t) = pi(t) ).
j=1

Well, for every X =3, -y ap®p and Y = 3, ) b Py in (S)', the Wick product X oY of X and Y
is the Hida distribution on 2 defined as

XoY = Z( Z aabﬁ>q>k.

keA \ a+B=k

The Wick algebra obeys the rules of an ordinary algebra, even together with the operation of sum, while
caution is required about combining it with the ordinary product: in general, for arbitrary X,Y, Z € (S Y,
X-(YoZ)# (X -Y)oZ (whenever those pointwise products do make sense). Note also that in general,
for arbitrary X,Y € L*(P), XoY ¢ L*(P) but, if X,Y € (S), then XoY € (S) as well.

A map Y: Ry — (S) is said (S)-integrable if, for every X € (S), (Y (+); X) € L':= L'(R;R) and,
in such a case, there exists an unique Hida distribution on €2, the (S)"~integral [ Y (t)dt of Y, with

</RY(t) dt;X> :/R<Y(t);X) .

We remark that, if Y'(+) is (S)-integrable then, for any 7 € R*, Y (- )1jo,7(+) remains (S)-integrable
and we write [ Y (t)dt = [, (Y (t)1j0.0(t)) dt.

Theorem. Fiz T € R and take u = (u(t))L, € Domd as a process on Q. Then, for any t € [0,T],
u(t) o W(t) is (S)-integrable and its (S)-integral coincides with the Skorohod integral of u (w.r.t. W):

T T
/ u(t) o W(t)dt :/ u(t) SW(t) € L*(P).
0 0

For any map Y : Ry — (S)  such for which Y'(+) o W(-) is (S)-integrable, Y (@) o W (t)dt is the
generalized Skorohod integral of Y.

An entire construction like all that could be made in a very more general way and furthermore,
anyhow, it could be genuinely connected to the Wiener-1t6 chaos expansion.

5
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Rough volatility

Let (Q, F,P) be a complete probability space such that there exists a 2D standard Brownian motion
(W, W) = ((W(t), W(t)))er on it (P-a.s. null for negative times) and fix 7' € R%.

On the one hand put p € [-1,1]\ {0}, p := y/1 — p? and produce the 1D standard Brownian motion
B = (B(t))tcr on Q defining its trajectories, for any ¢t € R, as B(t) == pW (¢) + pW (t) in such a way
that B and W have constant correlation p # 0. Assign to €2 the filtration F = (F})ier generated by B.

On the other hand choose a Hurst index H € ]0,1/2[, take the Volterra kernel K on R? given by,
for any s,t > 0, K(s,t) :== K(t — s) where, for any r € R,

K(r) = V2H |r[T=121g (r)

and consider the 1D fractional Riemann-Liouville Brownian motion W = (/W(t))teR on ) of index H
and Volterra dynamics based on W having trajectories, for any ¢t € R,

—

W(t) = /0 K(t —s)dW (s).

We remark that W is a continuous Gaussian process with negatively correlated increments and
locally H-Holder continuous trajectories, i.e. of any order strictly smaller than H and thus rougher
than Brownian paths, which is a local martingale independent of W that admits quadratic variation
(by virtue of the classical Burkholder-Davis-Gundy inequality).

Fixed f € CY(R;R,), a (simple) rough volatility process o = (o(t));>0 on Q is explicitly given by

o(t)=f(W({), t>0
meaning it indeed as the volatility process corresponding to the stochastic volatility I1t6 model

{dS(t)/S(t) =o(t)dB(t), t >0,
S(0) # 0 [P].

We're in the presence of a singular SDE due to the roughness of ¢ in the sense that, as ¢ is not even
a semi-martingale, in particular it admits no Stratonovich form, closely related to which the absence of
Markovianity of the model — although S = (S(t)):>0 remains a local martingale — and the lack of a
Wong-Zakai type approximation theory for that (and consequently the loss of hope in a successful use
of the well-known tools and methods for SDEs).

We submit hereunder a regularity structure for ¢ which would be the basis for solving the above
issues basically providing an approximation theory for stochastic integrals of type

/f(W)dW.

Our task is to build an analysis a la Hairer based on renormalized enhanced noise, incorporating and
keeping track of the relevant things we’ve in mind, so dealing with a mix of even hard algebraic-analytical
conditions and, as usual in this area, with the problem of discovering the “right” approximation of the
noise and therefore the renormalized approximating models.

Well, employed k € |0, H and M = M(H,k) = max{m e N|m(H — k) —1/2—x <0} € N¥
define, always depending on M, the index set

A={-1/2—k,(H—-k)—1/2—kK,.... M(H—K)—1/2—-k,0,H — k,...,M(H — k)}

and the symbols set
S ={E,EZ(2),....22&)",1,Z(5)..., 2(E)M}

attaching to every symbol 7 in S a homogeneity || in A as follows: |1| =0, |E| := —1/2 — k and,
form=1,...,M, |EZ(E)"| =m(H — k) —1/2 — k and |Z(2)"| = m(H — k). By reading powers of
symbols as products with themselves, we see that homogeneities are multiplicative.

6
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Of course = should be interpreted as an abstract representation of the white noise £ belonging to W,
that is € = W in the distributional sense; while Z (+) has the intuitive meaning of integration against
the Volterra kernel, improperly speaking, and in particular Z(Z) would perform w.

So let T = @, g (T) be the model space and G := { I, | h € (R, +) } be the structure group where

IW1=1 T,2:=52 IL,Z(E) =Z(E)+ hl and Tyy7-7" =T}7 - Tp7’ for 7,7’ € S with 7-7' € S

then extending to 7 by linearity and getting that the triple 7 = (A, T, G) is a regularity structure
(also thanks to the basic binomial theorem which will serve throughout the continuation).

With the aim of building an appropriate limiting It6 model M = (IL,T") for .7 (on R) based on &,
form =1,..., M we give a meaning to the terms ZZ(Z)" by defining an iterated It6 integral W™ of
second order so that it constitutes somehow a kind of its primitive (the context, for the moment, is too
irregular to simply propose a product): for s,t € R with s <,

t o~ o~ m
W™ (s, t) = / (W(T) - W(s)) dW (r).
S
By osserving that this process satisfies P-a.s. the pseudo Chen’s relation, for s,u,t € R with s < u < t,

—

Ui — l
W (s, 1) = W(s,u) + (”;) (W(u) - W(s)) Wl (u, 1)
=0
we extend W™ to R? just by imposing that useful relation for every s,u,t € R: for s,t € R with ¢ < s,

W (s, 1) = — f: (7) (W(t) - W(s))lwm*l(t, 5).
=0

Lemma. Form =1,..., M there exists a version of W™, for which we keep its symbol, and there exists
p € [1,00] such that, for any K € IC, there exists a random positive t-constant Cx € LP(P) such that,

for any s,t € K (and P-a.s.),
(W™ (s,8)| < C|s — | H—RIFL/27x,

For s,t e Rand m=1,..., M (and P-a.s.), define

Pt,Sl :1 Hsl:zl‘
I,Z=2 L JmE=w

_ _ —~ —~ an S —~ m
I s Z(Z) ==Z(Z) + (W(t) — W(s))1 ILZ(E)™ = (W(-)—W(s))
Lystm -7 =Ty 7 Iy s7’ when 7-7'€ S [LEZ(E)™:= %Wm(s, <)

then extending to 7 by linearity.
Proposition. The pair M = (IL,T), where I' = (It 5 )¢ ser and II = (Is)ser, is (P-a.s.) a model for 7.

The next goal is to find, for € | 0, a reasonable approximating model M® = (II¢, T'¢) for .7 of M, to
be renormalized, relying on a smart approximation W€ of & (as distributions). About this, let’s consider
a function ¢°: R%y — R, which should be understood as an approximation of the Dirac delta and
which could be easily built from a mollifier as well as a wavelet basis, with the following properties.

x The function 6% is measurable, symmetric and bounded with ||6%]|. = O(e71).

* There exists 5 € ]1/2 4+ k, oo such that, for any « € R, the function 6°(z,-): R, — R belongs to the
Besov space Bﬁm(R) and z — 0°(z, ) is measurable and bounded as a map from R, into Bﬁoo(R).

* There exists ¢ € ]0, 00| such that, for any @ € R, supp 6°(z, - ) C Bee(z) with [ 6°(z,y) dy = 1.

7
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Indeed W turns out to be locally contained in Bag 1/ > "(R) C (Blﬂ ~ (]R))I and therefore we define

the approximation W := (WE( ))ter of &, a Gaussian pathwise measurable locally bounded process, as
We(t) = <W; 5 (t, - )> Lg, (t).
For 1D stochastic process u = (u(t))]_, on Q and t € R, we write
t t ]
/ u(r)dWe(r) = / u(r)We(r)dr
0 0

while, if u takes values in some non-homogeneous Wiener chaos induced by W, we write

/0 ) o AW (r) = /0 () o T (r) dr

In particular, we consider the approximation W¢ := (WE( ))ter of We as

We(t) =KW= /tK(t —r)dWe(r).
0

Lemma. For e | 0, there exist p € [1,00[ and random positive t-constants Ce,Cr € LP(P), where
are uniformly bounded, such that, for any s,t € [0,T], s € ]0,H[ and 6 € ]0,1] (and P-a.s.),

Wet) — We(s)| < Coplt — s| and ‘/Wa(t) —We(s) — (W(t) - W(s))) < Oplt — 5|0

Fore |0, s,te Rand m=1,..., M (and P-a.s.), define the approximating model for .7 of M by

TE1:=1 MEl=1
T2 =2 L jmE=i
—_ - an —_ = m
I, 7(2) = 2(2) + (V2(0) — *()1 LIE)" = (W) - Te@)"
IiT = IFeT FfsT when 7-7'€ S [EEZ(E)™ :WE(-)(WE(-)—WE(S))

(extending then to T by linearity).
Proposition. The pair M® = (II¥,1¥), where I'* = (I} ); ser and 11° = (II5)ser, is a model for 7.

In order to understand the diverging quantities ¢ to be subtracted from II° to renormalize it in
the sense of Hairer, since there cannot be any hope of a convergence like [ f (We) dWeto [ f (W) dw,
what’s below is enlightening. Before, given 1D Gaussians Uy, V,Us on  and [, h € N* with [ < h,

UL (VoUM ) = Ve (UlUM Y +1E[VU U U

Lemma. Forany o €D, sc R, m=1,...,M and € | 0, the two following identities hold.

L ILEZ(E)"(p) = /0 o) (W)~ W (s) /0 (s —r)(W(r) — W(s))" dr.

2. Defined A °(s,-) = E[/V[?‘E(S)WE()] = ILRQ / / 0°(+,x)0%(x,y)K(s — y) dedy, then

—m [ (&) [ (s 8) — (0] (WE () — We(s) ™ dt
0
Furthermore, assuming s < T, there exists Cr € RY such that, for any t € [0,T7],

|2 (s, )| < Cpel =12,

8
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As a corollary, if we interpret J£¢ as an approximation of the kernel K, then we see that
e (t) = H=(t,t), t>0
would correspond to something diverging like “07~1/2 = 50” in the limit € | 0.
Theorem. Fore |0, s€R andm=1,...,M (and P-a.s.), define
IEZ(E)™ =N EL(E)" — me*(- ) I Z(E)™

leaving ﬁi'r = IIST on the remaining symbols T € S. Then the pair Me = (ﬁf, I'¢), where s = (ﬁi)sT:O,
is a model for T and there exists Cp € R such that, for any p € [1,00[ and § € ]0,1],

(1= M |, g = Cre™

where of course, for any model M = (fI, f) for 7 on R,

1583 = s { | (1~ T )|~

—I-Sup{ HFMT — ft,sTH It — |17 ’ t,s €[0,T],7 € S,a’ € A with o/ < |T|}
a/

peD,Ae]0,1],s € [O,T},Tes}
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