
Exam of Statistical Learning Theory and Applications

University of Insubria

DIPARTIMENTO DI SCIENZA E ALTA TECNOLOGIA
PhD in Computer Science and Mathematics of Calculus

Exam of Statistical Learning Theory and Applications

A Mathematical Panorama of One-Layer Architectures Learning Algorithms
Teachers: S.Villa and L.Rosasco PhD Student: M.Tarsia∗ Tutor: D.Cassani Advisor: E.Mastrogiacomo

Academic Year 2018–2019
14/09/2019

Introduction and Summary

The purpose of learning, or supervised learning, is to understand intelligence, that means to understand
how the human brain works in order to build intelligent machines which learn from experience and improve.

The intrinsic issue of this field is in fact dealing with possibly many data and, consequently, the mathematics
of learning theory originates from the idea to learn from a finite set of input-output pairs to perform a very
specific task: that is, training and learning from examples.

For instance, one could have input points equal to multi-dimensional points of characterizing properties
and output points equal to or −1 or +1 meaning respectively or bad or good according to some conventions.

Training sets. Let be m ∈ N \ { 0 } a cardinality or size for such a set, d ∈ N \ { 0 } a dimension for input
points, X ⊆ Rdx an input space which is supposed to be a closed set, and Y ⊆ Ry an output space which
can be imagined as Y ≡ Ry. Then a training set, or set of training points, is a set Sm ≡ Smd,X,Y of m points{

(xi, yi)
}m
i=1

in X × Y ⊆ Rd+1
(x,y) called in fact training points:

Sm .
=
{

(xi, yi)
}m
i=1
.

The objective. Training with the following meaning: finding an optimal functional relationship between
inputs and outputs or, more precisely, synthesizing an empirical optimum

f̂ ≡ f̂Sm : X → Y

which belongs to an appropriately structured hypothesis space H of functions and which best represents the
more likely relation between the input points xi and the corresponding output points yi for each i = 1, . . . ,m.

The central question must becomes how and how much we could learn from a training set Sm or, equivalently,
how much such a f̂ would be predictive which means well estimating outputs for previously unseen inputs.

The main key issue will be the tradeoff or conflict between the number m of training points and the complexity
of the hypothesis space H. The learning techniques to deal with all that are based on approximation theory,
functional analysis and probability theory as well.

Heuristic idea. Nothing in known except the training set Sm and therefore, to achieve an empirical optimum
f̂ ≡ f̂Sm within a suitable hypothesis space H, a very natural approach should result to look for a functional
combination of input-centered regular kernels K(xi, · ) ≡ Kxi( · ) on X, preferably both finite and linear. Here
the corresponding concept of optimality must involve all the training points through a reasonable choice of
the error of the training set called empirical risk or error Ê( · ) ≡ ÊSm( · ) to minimize on H, and all this in
such a way that everything leads to a concrete and quite simply calculable well-posed formula.
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1

mailto:mtarsia1@uninsubria.it
https://www.uninsubria.it/hpp/marco.tarsia


Exam of Statistical Learning Theory and Applications

In order to get f̂ as such a special linear combination, H will be built as a real Hilbert space of continuous
functions from X to Y deeply related to K, namely the corresponding reproducing kernel Hilbert space or
RKHS (H, 〈 · ; · 〉H) ≡ (HK , 〈 · ; · 〉K) according to the Moore-Aronszajn theorem. Among other things, indeed,
one could count also on the reproducing formula f( · ) =

〈
f ;K( · )

〉
K

valid on X for each f ∈ HK from
which immediately the intuition to select as empirical risk Ê to minimize on HK a regularized quadratic-type
functional to be able then to differentiate in the classical sense of Fréchet and conclude easily while in addition,
at the same time, parameters will be modulated so that even computationally everything would be great.

Lastly, since the training points are of course intrinsecally affected by noises, the framework will be supposed
to be dominated by an unknown underlying probability distribution ρ ≡ ρmd,X,Y which brings in a canonical
way to the true target function fρ : X → Y and therefore to a technical notion of true optimum fH̃K : X → Y
to introduce finally the so-called conditions of consistency for learning algorithms: these determine when the
empirical minimizer is a rather good approximation, at least in probability as m ↑ +∞, of this true optimum.

Learning algorithms.

1. Fix a training set Sm ≡
{

(xi, yi)
}m
i=1

and choose a not trivial Mercer’s kernel K( · , · ) on X.

2. Place K̂ ≡
[
K(xi,xj)

]m
i,j=1
∈ Rm×m, y ≡ (y1, . . . , ym) ∈ Rm, I ≡ Im ∈ Rm×m the m×m identity matrix

and, for each γ ∈ ]0,+∞[, compute the solution c ≡ cSm,K,γ ≡ (c1, . . . , cm) ∈ Rm of the m×m linear system(
mγI + K̂

)
c = y.

3. Define f̂ : X → Y through the following formula: for each x ∈ X,

f̂(x)
def
=

m∑
i=1

ciK(xi,x).

Some remarks.

• The square linear system above is always well-posed because, for each data and parameter in play, mγI+ K̂
is a symmetric and strictly positive-definite real matrix and moreover, if mγ is taken large enough, then its
‖ · ‖2-condition number becomes good enough: λmax

(
mγI + K̂

)
/λmin

(
mγI + K̂

)
→ 1 as mγ → +∞.

The algorithms for solving it efficently constitute one of the most developed areas in numerical analysis.

• Data points are sufficient to describe the empirical optimum and, for any i = 1, . . . ,m, yi = f̂(xi) +mγci.

• If there exists σ ∈ ]0,+∞[ such for which K ≡ Kσ is a Gaussian kernel on X, then the learning algorithms
approximate f̂ by a weighted superposition of Gaussian blobs centered at the location of one of the m
input data and, of course, each weight is such as to minimize the designated regularized empirical error.
The parameter σ, together with γ, control its degree of smoothing, of noise tolerance and of generalization.
For instance, as σ ↓ 0, f̂ becomes as a look-up table which cannot generalize because, for each (x, y) ∈ X×Y ,
it provides y = yi only when x = xi, otherwise zero, for each i = 1, . . . ,m.

• The learning algorithms perform really well in a multitude of applications involving regression as much as
binary classification: when, for each i = 1, . . . ,m, yi ∈ {−1,+1} and thus the predicted label is {−1,+1}
itself depending on the sign of f̂ . Regression ones are surely the oldest and they typically involve fitting
data in a small number of dimensions and not as happens for computer, graphics, robotics science, etc.
Binary classification employment instead simply abounds in every field.
Particularly interesting are financial applications too as, for instance, the estimation of the price of derivative
sicurities such as stock options. In this case the algorithms replace the classical Black-Scholes equation
by learning from historical data the map from an input space - volatility, underlying stock price, time to
expiration of the option, . . . - to the output space - the price of the option.

I About the whole continuation, we assume that objects as those we’ve discussed above are fixed once for all: a
size m, a dimension d, a compact input space X ⊂ Rdx, an output space Y , a training set Sm ≡

{
(xi, yi)

}m
i=1

,
a C∞ Mercer’s kernel K on X and its RKHS (HK , 〈 · ; · 〉K) equipped thus also with ‖ · ‖K ≡ 〈 · ; · 〉

1/2
K .
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Optimality and Consistency

Empirical risks. For each γ ∈ ]0,+∞[, an empirical risk or error is a loss or price-to-pay functional
Ê ≡ ÊSm,K,γ : HK → [0,+∞[ defined as a Tikhonov regularized mean squared sum: for each f ∈ HK ,

Ê(f)
.
=

1

m

m∑
i=1

(
f(xi)− yi

)2
+ γ ‖f‖2

K .

Theorem (Empirical risk minimization (ERM)). Let Ê ≡ ÊSm,K,γ be an empirical risk. Then there exists
only one function f̂ ≡ f̂Sm,K,γ ∈ HK which is an empirical optimum in HK with respect to Ê meaning that

Ê(f̂ ) = inf
f∈HK

Ê(f) ≡ min
f∈HK

Ê(f)

and moreover f̂ is uniquely determined by the following equation: for each x ∈ X,

f̂(x) =

m∑
i=1

yi − f̂(xi)

mγ
K(xi,x).

Proof. Compute the classical Fréchet derivative of Ê( · ) on HK , applying it to a generic element f̄ ∈ HK and
setting all that equal to zero obtaining that, for each f̂ ∈ HK minimizer for Ê ,

1

m

m∑
i=1

(
f̂(xi)− yi

)
f̄(xi) + γ

〈
f̂ ; f̄

〉
K

= 0

and now, for each x ∈ X, choose f̄ ≡ Kx and use the reproducing formula f̂(x) =
〈
f̂ ;Kx

〉
K
.

Remark . A quite similar derivation holds for an arbitrary non-quadratic loss functional block V (y, f(x))
instead of (f(x)− y)2, (x, y) ∈ X × Y , which yields in fact the same type of identity for f̂ while however
the equation for the weights c1, . . . , cm becomes in general non-linear depending on the exact form of V : for
instance, it could happen that each ci must be found by solving a quadratic programming problem as it
happens in support-vectors machines, or SVM, which are supervised learning models with associated learning
algorithms that analyze data used for classification and regression analysis.

Probabilistic setting. We agree that there exists an unknown probability measure ρ ≡ ρmd,X,Y defined on the
class B(X×Y ) of the Borel sets in the product space X×Y ⊂ Rd+1

(x,y) from which the data Sm ≡
{

(xi, yi)
}m
i=1

is randomly drawn in such a way that (X × Y,B(X × Y ), ρ) becomes a probability space and

(xi, yi)
m
i=1

L
= ρ⊗m

with respect to a suitable starting probability space. We assume also that ρ({·} × Y ) > 0 holds on X and
thus we introduce other fundamental probability measures which are canonically induced by ρ.

ρx. For each x ∈ X, the conditional probability measure on {x} × Y ⊂ X × Y : for any B ⊆ Y Borel set,

ρ(B |x) := ρx({x} ×B)
.
=
ρ({x} ×B)

ρ({x} × Y )
.

ρX. The marginal probability measure on X: for any A ⊆ X Borel set, ρX(A)
.
= ρ(A× Y ).

Target function. The target function fρ : X → Y is defined through ρx by placing, for each x ∈ X,

fρ(x)
.
=

∫
{x}×Y

y dρx(y) ≡
∫
Y
y dρ(y |x)

where naturally, for any y ∈ Y , ρ(y |x) := ρ({y}|x) ≡ ρ({(x, y)})/ρ({x} × Y ).

That fρ could be certainly regarded as the true input-output function reflecting our stochastic environment.
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Hypothesis spaces. A convex space H of continuous functions from X to Y which, as a subset of C(X;Y ),
is also compact with respect to the topology induced by the uniform norm ‖f‖∞≡ supx∈X |f(x)|, f ∈ C(X;Y ).

Let’s dip into the following standard situation considering the usual inclusion operator iK : HK ↪→ C(X;Y ),
which is compact as linear operator since K is supposed to be C∞ on X, and, for any arbitrary R ∈ ]0,+∞[,
the closed ball BR

.
= { g ∈ HK | ‖g‖K ≤ R } in HK : then we could take H ≡ H̃K as the ‖ · ‖∞-clousure

H̃K
.
= iK(BR)

(for each f ∈ C(X;Y ), f ∈ H ≡ H̃K if and only if there exists an uniformly bounded sequence (gn)n in HK
such for which gn → f with respect to ‖ · ‖∞ as n→ +∞).

Note. A way to build a C∞ Mercer’s kernel on X: choose a completely monotonic function ψ : ]0,+∞[→ R+

(ψ is C∞ with (−1)nψ(n) ≥ 0 for any n ∈ N) and thus define, for each x,x′ ∈ X, Kψ(x,x′)
.
= ψ(‖x− x′‖22).

Expected risks. For each R ∈ ]0,+∞[, an expected risk or error is a mean squared integral loss functional
Eρ ≡ Eρ,K,R : H̃K → [0,+∞[ defined through fρ and ρX by placing, for each f ∈ H̃K ,

Eρ(f)
.
=

∫
X

(
f(x)− fρ(x)

)2
dρX(x).

Remark . If we’ve to deal with a loss function ` : Y ×Ra → [0,+∞[ as it is the square loss (y, a) 7→ (a− y)2,
(y, a) ∈ Y × R, and if we assume that ρ can be decomposed in such a way that worths∫

X×Y
`(y, ?(x)) dρ(x, y) =

∫
X

[ ∫
Y
`(y, ?(x)) dρ(y |x)

]
dρX(x)

then the problem of minimizing this sort of expected risk becomes to minimize simply that functional inside
the integral over X and thus, in the case of the square loss, it leads exactly to the mean fρ( · ) of ρ( · ) on X.

Empirical consistency. The result below could be shown without particular difficulties.

Theorem (Empirical consistency). Let’s fix R ∈ ]0,+∞[. Then the three following conditions hold.

1. There exists only one function f̃Sm ≡ f̃Sm,K,R ∈ H̃K such that

f̃Sm ∈ argmin
f∈H̃K

{
1

m

m∑
i=1

(
f(xi)− yi

)2
}
.

2. Let Eρ ≡ Eρ,K,R be an expected risk. Then there exists only one function fH̃K ≡ fρ,K,R ∈ H̃K which is the
true optimum in H̃K with respect to Eρ meaning that

Eρ(fH̃K) = inf
f∈H̃K

Eρ(f) ≡ min
f∈H̃K

Eρ(f).

This number AH̃K ≡ Aρ,K,R
.
= Eρ(fH̃K) ∈ [0,+∞[ is the approximation error (corresponding to ρ and H̃K).

The non-negative random variable SSm ≡ SSm,ρ,K,R
.
= Eρ(f̃Sm)−AH̃K is the sample error corresponding to Sm.

3. LetM ≡M
X,Y,H̃K ∈ ]0,+∞[ be such that, for any f ∈ H̃K and for almost all (x, y) ∈ X×Y , |f(x)−y| ≤M

while, for any η ∈ ]0,+∞[, let cov#(η) ≡ cov#(H̃K , η) ∈ N \ { 0 } denote the minimum number of open balls
in H̃K of radius η necessary to cover H̃K . Then SSm→ 0 in probability as m→ +∞ because, more precisely,

ρ⊗m
({

Sm∼= (xi, yi)
m
i=1 ∈ (X × Y )m

∣∣∣ SSm ≤ ε
})
≥ 1− cov#(ε/24M) exp(−mε/288M2).

Remark . There’s also a good amount of studies concerning estimates for those covering numbers. Moreover,
the writing Eρ(f̃Sm) = AH̃K + SSm is indirectly related to the well-known bias-variance decomposition.
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Approximation error. Let’s symbolize L2
ρX
≡ L2

ρX
(X;Y ) and let’s consider the Hilbert-Schmidt integral

operator TK : L2
ρX
→ C(X;Y ) < L2

ρX
corresponding to K defined, for any f ∈ L2

ρX
and x ∈ X, by the formula

(TKf )(x)
.
=

∫
X
f(x′)K(x,x′) dρX(x′).

Observe that TK is strictly positive meaning self-adjoint - for each f, g ∈ L2
ρX

, 〈TKf ; g〉L2
ρX

= 〈f ;TKg〉L2
ρX

-

and such that, for any f ∈ L2
ρX
\ { 0 }, 〈TKf ; f〉L2

ρX
> 0, and also compact as operator: so let SK := T

1/2
K be

that unique strictly positive and compact operator SK : L2
ρX
→ C(X;Y ) satisfying S2

K ≡ SK ◦ SK = TK .

Then it could be shown that SK(L2
ρX

) = HK and rather that SK is a Hilbert isomorphism between L2
ρX

and
HK (ρX -free!) and thus, for any s ∈ ]0,+∞[, S−sK : L2

ρX
→ HK results a Hilbert isomorphism as well with

GK
.
=
{
g ∈ L2

ρX

∣∣∣ ‖S−sK g‖L2
ρX

< +∞
}

= HK

which is canonically equipped with the inner product given, for any g, h ∈ GK , by 〈g ;h〉GK
.
=
〈
S−sK g ;S−sK h

〉
L2
ρX

.

Remark . That L2
ρX
-norm above must be interpreted by the meaning of the classical spectral theorem for

strictly positive and compact operators, which in fact we mention below.

Theorem (Spectral theorem for compact operators). Let S be a compact operator on an infinite dimensional
and separable real Hilbert space H. Then there exists a complete orthonormal system or Hilbert basis {ϕn}n∈N
in H consisting of all the eigenvectors of S. More precisely, for each n ∈ N, let λn ∈ C be the eigenvalue of S
corresponding to the eigenvector ϕn of S. Then the four following conditions hold.

a. Either #{λn}n∈N < +∞, or λn → 0 as n→ +∞.

b. It’s worth that supn∈N|λn| ≡ maxn∈N|λn| = ‖S‖ ≡ sup‖h‖H=1 ‖S(h)‖H.
c. If S is self-adjoint then, for any n ∈ N, λn ∈ R.
d. If S is positive (respectively strictly positive) then, for any n ∈ N, λn ≥ 0 (respectively λn > 0).

So, if S is a positive and compact operator on such a H, then is defined, for any τ ∈ [0,+∞[ and (an)n∈N ⊂ R,

Sτ
( ∞∑
n=0

anϕn

)
.
=
∞∑
n=0

λn
τanϕn

and thus, if S is strictly positive, the similar formula even for any τ ∈ ]−∞,0[ but regarding only the subspace{∑∞
n=0 anϕn ∈ H

∣∣∣ ∑∞n=0(λn
τan)2 < +∞

}
of H, placing finally ‖Sτ?‖H ≡ +∞ outside of it.

The following estimate could be shown.

Theorem (Approximation error). For any R, s ∈ ]0,+∞[ and r ∈ ]0, s[,

AH̃K ≡
∥∥∥fH̃K− fρ∥∥∥2

L2
ρX

≤ R−2r/(s−r)∥∥S−rK fρ
∥∥2s/(s−r)
L2
ρX

.

Remark . Something can be said also about sample and approximation errors for the regularization algorithms.

A Bayesian interpretation. The data term can be seen as a model of Gaussian additive noise with the
RKHS term as a prior probability on the set of parameters HK . In fact, for any f ∈ HK , let’s set:

• P[f ] as a prior probability of the random field f ;

• P[Sm|f ] as a conditional probability of Sm given f or, namely, a likelihood of the model;

• P[f |Sm] as the consequent conditional probability of f given Sm or, namely, the posterior probability.

5



Exam of Statistical Learning Theory and Applications

Then the classical Bayes’ theorem of inversing probability gives us that, for any f ∈ HK ,

P[f |Sm] =
P[Sm|f ] P[f ]

P[Sm]
∝ P[Sm|f ] P[f ]

and so, if we choose P[f ] ∝ exp(−‖f‖2
K) and we take a normally distributed noise with standard deviation

σ ∈ ]0,+∞[ meaning precisely that, for any i = 1, . . . ,m, yi ∼ N (f(xi), σ2) with y1, . . . , ym independent,
being thus in a situation of homoscedasticity, then finally

P[f |Sm] ∝ exp

(
− 1

2σ2

m∑
i=1

(
f(xi)− yi

)2
− ‖f‖2

K

)
.

Now one of the most natural estimates from that posterior probability is the well-known maximum a posteriori
estimate or MAP, taking indeed the most probable solution f̂MAP ∈ HK given the prior and the data:

f̂MAP ∈ argmax
f∈HK

P[f |Sm] ≡ argmin
f∈HK

{ m∑
i=1

(
f(xi)− yi

)2
+ 2σ2‖f‖2

K

}

which leads in fact to the same f̂ as the regularization functional in the case of 2σ2≡ mγ.

Condition for learnability. A necessary and sufficient condition on a hypothesis space H which guarantee
the empirical consistency is that H results an uniform Glivenko-Cantelli class of functions, in which case no
specific topology is assumed for it: that is, a class H of functions f : X → Y such that, for any ε > 0,

lim
m→+∞

sup
ρ̄X∈PX

ρ̄⊗mX

({
x⊗m := (x1, . . . ,xm) ∈ Xm

∣∣∣∣ ∣∣∣∣∫
X
f(x) dρ̂x⊗m(x)−

∫
X
f(x) dρ̄X(x)

∣∣∣∣ > ε

})
= 0

where PX is the family of every Borel probability measures ρ̄X on X and where, for each m ∈ N \ { 0 }
and x⊗m := (x1, . . . ,xm) ∈ Xm, ρ̂x⊗m is the empirical probability measure on X supported on the finite set{
x1, . . . ,xm

}
⊂ X given, for any A ⊆ X Borel set, by

ρ̂x⊗m(A) ≡ 1

m

m∑
i=1

δxi(A)

denoting with δx( · ) ≡ 1( · )(x), x ∈ X, the usual Dirac probability measure on X centered at x.

Appendix

Mercer’s kernels. A Mercer’s kernel K on X is a function K : X ×X → R which is symmetric, continuous
and semipositive-definite in the following natural terms.

• Symmetry: for each x,x′ ∈ X, K(x,x′) = K(x′,x).

• Continuity: with respect to the usual Euclidean norm ‖ · ‖2 on R2d, for instance.

• Semipositiveness: for each N ∈ N \ { 0 }, u1, . . . ,uN ∈ X and c1, . . . , cN ∈ R,

N∑
i,j=1

cicjK(ui,uj) ≥ 0

and in particular
[
K(ui,uj)

]N
i,j=1
∈ RN×N is a symmetric and semipositive-definite real matrix and thus,

as such, each of its N eigenvalues is real and non-negative.

Example. Given σ ∈ ]0,+∞[, the Gaussian kernel K ≡ Kσ on X defined by placing, for any x,x′ ∈ X,

Kσ(x,x′)
.
= exp

(
−
‖x− x′‖22

2σ2

)
.
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Reproducing kernel Hilbert spaces. A reproducing kernel Hilbert space or RKHS (H, 〈 · ; · 〉H) is a real
Hilbert space of continuous functions from X to R in which all the evaluation functionals result (linear and)
continuous (in zero) belonging therefore in the dual space H′: that is, for any x ∈ X and f ∈ H,

|f(x)| = Ox(‖f‖H) ≡ Ox(〈f ; f〉1/2H ).

As a simple result of the classical Riesz-Fréchet representation theorem, any RKHS is associated with a
Mercer’s kernel K on X which in fact reproduces every function f in H in the sense that, for each x ∈ X, the
evaluation or centering of f at x could be performed by taking the inner product with the centered kernel
K(x, · ) ≡ Kx( · ) at x itself: so, for any x ∈ X and f ∈ H,

f(x) = 〈f ;Kx〉H
a kind of relation which actually implies that continuity the definition requires (Cauchy-Schwarz inequality).

The interesting part is of course the viceversa to all this.

Theorem (Moore-Aronszajn). Let K be a Mercer’s kernel on X. Then there exists an unique RKHS consisting
of continuous functions from X to R for which K is a reproducing kernel.

Proof. The existence is quite standard. The uniqueness is substantially based on the well-known decomposition
theorem of a real Hilbert space into the direct sum of a closed vectorial subspace with its orthogonal space.

Remark . It’s not entirely straightforward to construct a real Hilbert space of functions which is not a RKHS.

Functional derivatives. A functional or variational derivative relates a change in an abstract functional
to a change in functions on which the functional depends. When the set of the functions considered is a real
Banach space, the functional derivative becomes known as the Fréchet derivative and extends the concept of
total differentiability; when such a set is instead a more general locally convex topological real vector space,
one uses the Gâteaux derivative which extends the concept of directional differentiability.

Fréchet derivative. Let be (V, ‖ · ‖V ), (W, ‖ · ‖W ) two real Banach spaces, U ⊆ V an open set and u0 ∈ U .
Then a functional F : U → W is Fréchet differentiable at u0 if there exists a bounded linear operator
L ≡ LF,u0 : V →W (L is linear with supv∈V \{ 0 } ‖L(v)‖W /‖v‖V ≡ sup‖v‖V =1 ‖L(v)‖W < +∞) such that

lim
‖h‖V→ 0

‖F (u0 + h)− F (u0)− L(h)‖W
‖h‖V

= 0.

In that case such an operator L is unique: it’s written DF (u0) and called the Fréchet derivative of F at u0.
Gâteaux derivative. Let be V,W two locally convex topological real vector spaces, U ⊆ V an open set
and u0 ∈ U . Then a functional F : U → W is Gâteaux differentiable at u0 if there exists an operator
G ≡ GF,u0 : V →W such that, for any direction h ∈ V at u0, the following limit in W holds:

DF (u0 ;h)
.
= G(h) = lim

t→0

F (u0 + th)− F (u0)

t
.

Remark . Fréchet differentiability implies Gâteaux differentiability, but the viceversa cannot hold in general.

Tikhonov regularization. The most commonly employed method of regularization for ill-posed problems:
that is, a procedure of adding information in order to solve such a problem or to prevent overfitting.

Ill-posedness. A well-posed problem in the classical sense of Hadamard has the peculiarities that a solution
exists, it’s unique and it changes continuously with respect to the initial conditions; problems which are not
well-posed are termed ill-posed. Inverse problems, namely processes of calculating from a set of observations
the causal factors which produced them, are often ill-posed. Well, if a problem results ill-posed, then it needs
to be re-formulated for numerical treatment including typically some additional preference assumptions as,
for instance, smoothness of solutions: such a process is known in fact as regularization.

Let’s observe that, as a continuum model must often be discretized in order to obtain a numerical solution,
even if a problem is well-posed it may still be ill-conditioned: when occours that an arbitrarily small variation
in the initial data could lead to much bigger errors in the answers.
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Overfitting . Overfitting is the production of an analysis which corresponds too closely or even exactly to a
given set of data and may therefore fail to fit additional data or to predict reliably future observations as well:
so an overfitted model is a statistical model that contains more parameters that can be justified by the data.

The essence of overfitting is to have unknowingly extracted some of the residual variation or noise as if that
discrepancy represents a considerable portion of the underlying model structure, while we’d like instead
to make sure we obtain something much more intrinsic to the situation. The possibility of doing so exists
basically because the criterion used for selecting a model isn’t the same as that used to establish its suitability:
that is, there’s a conflict between memorizing or observing data and learning or generalizing from a trend.

Viceversa, when a statistical model fails to capture enough of the underlying structure of the assigned data,
we talk about underfitting: so an unfitted model is a model where some parameters or terms that would
appear in a correctly specified model are missing. For instance, when fitting a linear model to non-linear data.

To be rigorous, within learning theory we should say respectively overtraining and undertraining.

Linear systems. Let be m, p ∈ N \ { 0 }, A ∈ Rm×p, b ∈ Rm and let’s focus on the m× p linear system

Ax = b.

The very standard approach to determine such a x ∈ Rp is given by the ordinary least squares linear regression
or OLS which, as is well-known, intends to minimize on Rp the sum of the corresponding squared residuals
‖Ax− b‖22, where ‖ · ‖2 denotes the usual Euclidean norm on Rm. However a whole series of conditions which
involves m, p and A, as m > p plus A injective, must be verified and consequently it could likely happen that
the solution doesn’t exist or that it isn’t unique: in short words, that the problem is ill-posed.

Within such situations, OLS estimation leads to an overdetermined - overfitted - or more often an undetermined
- underfitted - system of equations: think about the fact that most real-world phenomena have the effect of
low-pass filters in the forward direction A : x 7→ b and thus, in solving the inverse problem, the inverse map
b 7→ x operates conversely as a high-pass filter with the very undesirable tendency of amplifying noise as its
singular values become larger. In addition, OLS implicity nullifies every element of the reconstructed version
of x that is in the null-space or kernel of A, rather than allowing for a model to be used as a prior for x.

In order to overcome all this giving preference to a particular solution x̂ ∈ Rp with some desirable properties,
one includes a suitably chosen Tikhonov regularization matrix Γ ∈ Rm×p \ { 0 } in such a minimization:

min
x∈Rp

{
‖Ax− b‖22 + ‖Γx‖22

}
.

Then there exists an unique solution x̂ ≡ x̂Γ ∈ Rp which is explicitly given by the following formula:

x̂ =
(
ATA+ ΓTΓ

)−1
ATb.

This regularization improves also the conditioning of the problem, enabling a direct numerical solution, and
guarantees the freedom to modulate its effect by the scale of Γ itself (for instance, x̂Γ≡0 is the OLS solution).

We could think about Γ as the rectangular diagonal matrix with all α ∈ ]0,+∞[ on the improper diagonal
and in fact, for such a case, we conclude with the three following consequential remarks.

Singular values decomposition. Let’s assume m ≥ p and let V ∈ Rp×p and U ∈ Rm×m be those unitary
matrices (V T ≡ V −1 and UT ≡ U−1), and Σ ∈ Rm×p be that rectangular diagonal matrix with non-negative
diagonal components σ1, . . . , σp ≥ 0, which compose the singular values decomposition or SVD of A:

A = UΣV T.

The columns of V are the right-singular vectors of A, those of U are the left-singular vectors of A and the
σ1, . . . , σp are the singular values of A. The latter coincide exactly with the square roots of the eigenvalues of
the symmetric matrix ATA ∈ Rp×p and, geometrically, they correspond to the lengths of the semi-axes of the
ellipsoid in Rm that is the image by A of the unit sphere in Rp.
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By this writing, it’s rather immediate to discover that the Γ-regularized solution x̂ ≡ x̂Γ ∈ Rp becomes

x̂ = V DUTb

where D ∈ Rp×m is the rectangular diagonal matrix with diagonal components σi/(σi2 +α2) ≥ 0, i = 1, . . . , p.

That shows clearly the effect of the Tikhonov parameter α on the condition number of the regularized problem:

max
i=1,...,p

σi
σi2 + α2

≈α↑+∞ min
i=1,...,p

σi
σi2 + α2

≈α↑+∞ 0.

Wiener’s filter . So, if r := rank(A) ≤ m ∧ p ≡ p, and if (ui)
r
i=1 and (vi)

r
i=1 are r independent columns of

U and V respectively, then the weights wi := σi
2/(σi

2 + α2) ∈ [0, 1], i = 1, . . . , r, allow us to get

x̂ =
r∑
i=1

wi
(ui)

T
b

σi
vi.

The Tikhonov factor . Finally, a possible approach to determine the optimal regularization parameter α
relies on the so called leave-one-out cross-validation through which it could be shown that such a α minimizes
the ratio between the sum of the squared residuals and the square of the number of degrees of freedom:

‖Ax̂− b‖22[
tr
(
Im −A

(
ATA+ α2Ip

)−1
AT
)]2

expression which could be simplified using again the previous singular values decomposition of A.
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