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A mathematical frame for ABC

Underlying probability space: (Ω,A,P). Dimensions: dY , dH, n ∈ N∗= N \ {0}. Observations:
y1:n(ω) ≡ y1:n = (y1, . . . , yn) ∈ Yn, ω ∈ Ω, where Y ⊆ RdY has metric %Y . Parameters: ϑ ∈ H,
where H ⊆ RdH has metric %H. Prior: π ∈P(H). Model: {µnϑ}ϑ∈H, family in P(Yn).

Given topological spaces X ,Y, we denote by: B(X ) the σ-algebra of the Borel subsets of X ;
P(X ) the class of the probability measures on B(X ); B(X ,Y ) the class of the measurable
functions (X ,B(X ))→ (Y ,B(Y )). We write ∀̃ ϑ ∈ H meaning ∀ ϑ ∈ H [π ] (for π-a.a. ϑ ∈ H).

Axiom [A0 - a]

The model {µnϑ}ϑ∈H is generative meaning that, ∀̃ ϑ ∈ H, it’s possible to generate how many
z1:n = (z1, . . . , zn) ∈ Yn with z1:n ∼ µnϑ we desire.

Pseudo-observations: z1:n ∼ µnϑ in Yn, ∀̃ ϑ ∈ H. Deviation measure: D, pseudo-metric on Yn.

∀̃ ϑ ∈ H, Yn
ϑ

:=
{
z1:n ∈ Yn

∣∣ z1:n ∼ µnϑ
}
. ∀ ε > 0, Dn

ε :=
{
z1:n ∈ Yn

∣∣ D(y1:n, z1:n) ≤ ε
}
.

Axiom [A0 - b] (under A0 - a)

There exists ε0 > 0 such that, for any ε ∈ ]0, ε0[, the two following conditions hold.

1 The function ϑ 7→ µnϑ[Dn
ε ], to be seen as defined π-a.s., belongs to B(H, [0, 1]).

2
∫
H µ

n
ϑ[Dn

ε ]π(dϑ) > 0 (i.e. 6= 0).

I Regarding the whole continuation, we assume that A0 - a and A0 - b worth.
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A mathematical frame for ABC

ABC thresholds: any ε ∈ ]0, ε0[. ABC rejection algorithms: hereunder.

(i) Choose ε ∈ ]0, ε0[. (ii) Draw ϑ ∈ H by π and z1:n∈ Yn
ϑ. (iii) Keep ϑ if, and only if, z1:n∈ Dn

ε.

ABC posteriors: πε
y1:n << π, ∀ ε ∈ ]0, ε0[, whose density is proportional to µn

( · )[Dn
ε ]: ∀ B ∈ B(H),

πεy1:n [B ] =

∫
B µ

n
ϑ[Dn

ε ]π(dϑ)∫
H µ

n
ϑ′[Dn

ε ]π(dϑ′)
.

Axiom [A0 - c]

For any Y ∈ B(Yn), µn
( · )[Y ] ∈ B(H, [0, 1]) (coherently w.r.t. A0 - b).

Model for the true posterior (under A0 - c): for Y ∈ B(Yn) and B ∈ B(H) with π[B ] > 0,

P[Y |B ]
.

=
1

π[B ]

∫
B
µnϑ[Y ]π(dϑ).

The corresponding posterior: for Y ∈ B(Yn) and B ∈ B(H), whenever it makes sense,

π[B |Y ] =

∫
B µ

n
ϑ[Y ]π(dϑ)∫

H µ
n
ϑ′[Y ]π(dϑ′)

.

Therefore, the true posterior would be

π[ · |y1:n ] := π
[
·
∣∣{y1:n

}]
.
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A convergence result for ε ↓ 0

We denote by m := mdY ·n the Lebesgue measure on B(RdY ·n).

Axiom [A1]

∀̃ ϑ ∈ H, the two following conditions hold.

1 µnϑ << m with f nϑ := dµnϑ/dm such that, ∀̃ z1:n ∈ Yn [m ], f n
( · )(z1:n) ∈ B(H,R+).

2 f nϑ ( · ) is continuous and f n
( · )(y1:n) is not π-a.s. identically zero.

1 of A1 implies A0 - c while 2 of A1 ensures that
∫
H f nϑ (y1:n)π(dϑ) > 0 (eventually ∞).

Axiom [A2] (under A1)

There exist δ, ε̄ ∈ ]0,∞[ and g ∈ L1(π) with g ≥ δ [π ] all such that, ∀̃ ϑ ∈ H,

δ ≤ sup
z1:n∈Dn

ε̄

f nϑ (z1:n) ≤ g(ϑ).

A2 would imply 2 of A0 - b employing any ε0 ∈ ]0, ε̄].
A2 implies f n

( · )(y1:n) ∈ L1(π) with L1(π)-norm lower or equal than ‖g‖1 := ‖g‖L1(π).
Even the following generalization of A2 would work.

Axiom [Ã2] (under A1) There exist g ∈ L1(π) with g > 0 [π ] and ε̃ ∈ ]0,∞[ such that, for any
ε ∈ ]0, ε̃[, there exists δε ∈ ]0,∞[ such that, ∀̃ ϑ ∈ H,

δε ≤ sup
z1:n∈Dn

ε

f nϑ (z1:n) ≤ g(ϑ).
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Axiom [Ã2] (under A1) There exist g ∈ L1(π) with g > 0 [π ] and ε̃ ∈ ]0,∞[ such that, for any
ε ∈ ]0, ε̃[, there exists δε ∈ ]0,∞[ such that, ∀̃ ϑ ∈ H,

δε ≤ sup
z1:n∈Dn

ε

f nϑ (z1:n) ≤ g(ϑ).

Marco Tarsia (Insubria - DiSAT) Mathematical Foundation of ABC 24 September 2020 5 / 14



A convergence result for ε ↓ 0

We denote by m := mdY ·n the Lebesgue measure on B(RdY ·n).

Axiom [A1]

∀̃ ϑ ∈ H, the two following conditions hold.

1 µnϑ << m with f nϑ := dµnϑ/dm such that, ∀̃ z1:n ∈ Yn [m ], f n
( · )(z1:n) ∈ B(H,R+).

2 f nϑ ( · ) is continuous and f n
( · )(y1:n) is not π-a.s. identically zero.

1 of A1 implies A0 - c while 2 of A1 ensures that
∫
H f nϑ (y1:n)π(dϑ) > 0 (eventually ∞).

Axiom [A2] (under A1)

There exist δ, ε̄ ∈ ]0,∞[ and g ∈ L1(π) with g ≥ δ [π ] all such that, ∀̃ ϑ ∈ H,

δ ≤ sup
z1:n∈Dn

ε̄

f nϑ (z1:n) ≤ g(ϑ).

A2 would imply 2 of A0 - b employing any ε0 ∈ ]0, ε̄].
A2 implies f n

( · )(y1:n) ∈ L1(π) with L1(π)-norm lower or equal than ‖g‖1 := ‖g‖L1(π).
Even the following generalization of A2 would work.
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A convergence result for ε ↓ 0

Axiom [A3] (under A1)

∀̃ ϑ ∈ H, D(y1:n, · )−1(0) ⊆ f nϑ ( · )−1(f nϑ (y1:n)
)
.

In particular, if D is an actual metric, then A3 trivially holds.

Proposition

Under assumptions A1, A2 and A3, the three following conditions hold.

1 The ABC rejection algorithm and the ABC posterior are well defined for any ε ∈ ]0, ε0 ∨ ε̄[.

2 The true posterior π[ · |y1:n ] makes sense and takes the following expression: ∀ B ∈ B(H),
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Optimal transport theory in ABC

Let’s visualize (Y, %Y ) as a separable and complete metric space, thus also a Radon space, i.e.
any element in P(Y) is a Radon probability measure (outer regular on Borel subsets and inner
regular on open subsets); and let’s choose an unit cost function c : Y × Y → [0,∞] which is
lower semicontinuous (so Borel measurable) and a parameter p ∈ [1,∞[ of summability.

We denote by Pp(Y) the subclass of P(Y) whose elements have finite p -th moment.

Kantorovich’s formulation. For µ, ν ∈Pp(Y), consider the subclass Γ(µ, ν) of P(Y × Y) whose
elements γ are the couplings with marginals µ and ν. Then the Kantorovich’s formulation of the
optimal transport problem related to (Y, %Y ), c and p is

K(µ, ν)
.

= inf
γ∈Γ(µ,ν)

∫
Y×Y

c(y , y ′) dγ(y , y ′).

It can be shown that there exists a minimizer γ∗ ∈ Γ(µ, ν) for such a problem which could be
determined by means of gradient descent algorithms.

Example

For c = (%Y )p, K coincides with the p -power of the Wasserstein distance: K =W p
p .
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Optimal transport theory in ABC

Monge’s formulation. For µ, ν ∈Pp(Y), consider the subclass T(µ, ν) of B(Y) := B(Y,Y)
whose elements T satisfy T#µ = ν (push-forward or image measure of µ through T ). Then, at
least when µ and ν are both atomic (not diffuse) or otherwise when µ is not atomic (diffuse),
the Monge’s formulation of the optimal transport problem related to (Y, %Y ), c and p is

M(µ, ν)
.

= inf
T∈T(µ,ν)

∫
Y
c
(
y ,T (y)

)
µ(dy).

Example

Assume dY = 1 and Y = R with %Y equal to the Euclidean metric. If there exists a function
ϕ : R→ R which is convex and such that c(y , y ′) = ϕ(y − y ′), y , y ′ ∈ R, then, for µ, ν ∈Pp(R)

with µ not atomic, the function T∗ := F−1
ν ◦ Fµ ∈ T(µ, ν) is an optimal transport map w.r.t. the

Monge’s formulation (the unique if ϕ is strictly convex) and the following identity holds:

M(µ, ν) ≡
∫
R
ϕ
(
y − T∗(y)

)
µ(dy) =

∫ 1

0
ϕ
(
F−1
µ (t)− F−1

ν (t)
)
dt.

Radon’s metric. For any µ, ν ∈Pp(Y), %R(µ, ν)
.

= sup
h∈C0(Y,[−1,1])

∫
Y
h(y) (µ− ν)(dy) defines a

metric on Pp(Y) whose notion of convergence corresponds with the total variation one.
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Some lower bounds for n→∞

∀ n ∈ N∗, we write ∀̃ y1:n ∈ Yn meaning to vary of y1:n(ω) ≡ y1:n in Yn for P-a.a. ω ∈ Ω.

Deviation measure of distributions: ∀ n ∈ N∗, ∀̃ y1:n ∈ Yn, ∀̃ ϑ ∈ H, ∀ z1:n ∈ Yn
ϑ , we univocally

associate an element in P(Y), possibly in Pp(Y), µn ≡ µy1:n to y1:n and µϑ,n ≡ µϑ,z1:n to z1:n,
and we select a pseudo-distance T on P(Y), possibly on Pp(Y).

Example

µn = µ̂n := n−1∑n
k=1 δyk and µϑ,n = µ̂ϑ,n := n−1∑n

k=1 δzk (empirical distributions).

Axiom [B0]

∀ n ∈ N∗ and ∀̃ ϑ ∈ H, the three following conditions hold.

1 Yn
ϑ ∈ B(Yn).

2 ∀̃ y1:n ∈ Yn, the function z1:n 7→ T (µn, µϑ,n) belongs to B(Yn
ϑ ,R+).

3 ∀̃ y1:n ∈ Yn and ∀ ε ∈ ]0, ε0[,

µnϑ[Dn
ε ] ≥ µnϑ

[{
z1:n ∈ Yn

ϑ

∣∣ T (µn, µϑ,n) ≤ ε
}]
.

3 of B0 holds if, ∀ n ∈ N∗, ∀̃ y1:n ∈ Yn, ∀̃ ϑ ∈ H and ∀ z1:n ∈ Yn
ϑ ,

D(y1:n, z1:n) ≤ T (µn, µϑ,n).
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Some lower bounds for n→∞

Axiom [B1] (under B0)

There exists unique µ? ∈P(Y), possibly in Pp(Y), such that the following occurs.

1 For any n ∈ N∗, ω 7→ T (µn, µ?) is A-measurable as a function from Ω to R+.

2 T (µn, µ?)→ 0, P-a.s., as n→∞.

Axiom [B2] (under B1)

∀̃ ϑ ∈ H, there exists unique µϑ ∈P(Y), possibly in Pp(Y), such that the following occurs.

1 The function ϑ 7→ T (µϑ, µ?) belongs to B(H,R+).

2 ∀ n ∈ N∗ and ∀̃ ϑ ∈ H, the function z1:n 7→ T (µϑ,n, µϑ) belongs to B(Yn
ϑ ,R+).

3 There exists τ ∈ [0, 1[ such that, ∀̃ ϑ ∈ H and ∀ ε > 0,

lim supn µ
n
ϑ

[{
z1:n ∈ Yn

ϑ

∣∣ T (µϑ,n, µϑ) > ε
}]
≤ τ.

4 There exist σ ∈ [0, τ ] and ε1 > 0 such that, ∀̃ ϑ ∈ H and ∀ ε ∈ ]0, ε1[,

lim infn µnϑ
[{

z1:n ∈ Yn
ϑ

∣∣ T (µϑ,n, µϑ) > ε
}]
≥ σ.
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Some lower bounds for n→∞

3 of B2 is equivalent to any version of that in which an upper bound for ε is imposed.
Furthermore if, ∀̃ ϑ ∈ H and ∀ ε > 0, µnϑ[T (µϑ,n, µϑ) > ε]→ 0 as n→∞ (shortly put), then
any τ ∈ [0, 1[ satisfies 3 of B2 while only σ = 0 but any ε1 > 0 fulfill 4 of B2.

Axiom [B3] (under 1 and 2 of B2)

There exists ϑ? ∈ H which minimizes ϑ 7→ T (µϑ, µ?) over H: simbolically,

ϑ? ∈ argminH T
(
µ( · ), µ?

)
.

We denote ε?
.

= T (µϑ? , µ?) = minH T
(
µ( · ), µ?

)
≥ 0 and, ∀̃ ϑ ∈ H, Tϑ := T (µϑ, µ?) ≥ ε?.

Axiom [B4] (under B3)

There exist a neighborhood U?⊂ H of ϑ?, a connected neighborhood I0⊂ R+ of zero and a
strictly increasing function ψ : I0→ R+ all such that, ∀̃ ϑ ∈ U?,

Tϑ − ε? ≤ ψ
(
%H(ϑ, ϑ?)

)
.

We write “ for any (y1:n)n” meaning to vary of (y1:n(ω))n ≡ (y1:n)n, with y1:n(ω) ≡ y1:n in Yn

for any n ∈ N∗, w.r.t. a ω ∈ Ω. Lastly, for ε > 0, we denote by ε− any element of ]0, ε].
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Some lower bounds for n→∞

Proposition

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as ε?< ε0, for
ε ∈ ]0, ε0 − ε?[, (y1:n)n with n≡ nε large enough and with probability P going to 1 as n→∞.

1 πε?+ε
y1:n

[
T( · ) ≥ ε? + ε−/3

]
≥ (1− τ)π

[
ε? + ε−/3 ≤ T( · ) ≤ ε? + ε/3

]
.

2 πε?+ε
y1:n

[
H \ argminH T( · )

]
≥ (1− τ)π

[
ε? < T( · ) ≤ ε? + ε/3

]
.

3 Under assumption 4 of B2, let’s suppose that in 3 of B0 the equality holds and that
ε? < ε1/2. Then, for any ε ∈ ]0, ε0 − ε?[ even more enough small,

λε := (1− σ)π
[
T( · ) ≤ ε? + 5ε/3

]
+ τ π

[
T( · ) > ε? + 5ε/3

]
> 0

and
πε?+ε
y1:n

[
T( · ) ≥ ε? + ε−/3

]
≥

1− τ
λε

π
[
ε? + ε−/3 ≤ T( · ) ≤ ε? + ε/3

]
.

4 Under assumption B4, for any ζ ∈ I0 \ {0} and r > 0 small enough,

πε?+ε
y1:n

[
%H( · , ϑ?) ≥ r

]
≥ πε?+ε

y1:n

[
T( · ) ≥ ε? + ψ(ζ)

]
for which lower bounds of a and eventually c hold if also ζ is small enough.
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3 Under assumption 4 of B2, let’s suppose that in 3 of B0 the equality holds and that
ε? < ε1/2. Then, for any ε ∈ ]0, ε0 − ε?[ even more enough small,

λε := (1− σ)π
[
T( · ) ≤ ε? + 5ε/3

]
+ τ π

[
T( · ) > ε? + 5ε/3

]
> 0

and
πε?+ε
y1:n

[
T( · ) ≥ ε? + ε−/3

]
≥

1− τ
λε

π
[
ε? + ε−/3 ≤ T( · ) ≤ ε? + ε/3

]
.

4 Under assumption B4, for any ζ ∈ I0 \ {0} and r > 0 small enough,

πε?+ε
y1:n

[
%H( · , ϑ?) ≥ r

]
≥ πε?+ε

y1:n

[
T( · ) ≥ ε? + ψ(ζ)

]
for which lower bounds of a and eventually c hold if also ζ is small enough.
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Some lower bounds for n→∞

Let’s discuss how a condition consistent with A2 as the following could interact.

Axiom [A2′] (under A1)

There exist δ, ε′ ∈ ]0,∞[ and g ∈ L1(π) with g ≥ δ [π ] all such that, ∀̃ ϑ ∈ H and ∀ (z1:n)n
with z1:n ∈ Dn

ε′ for any n ∈ N∗,

δ ≤ lim infn f nϑ (z1:n) and lim supn f
n
ϑ (z1:n) ≤ g(ϑ).

Proposition

Under assumptions B0, B1, 1 and 2 of B2, B3, A1 and A2′, the following occurs so far as
ε? < ε0 ∧ ε′ and for ε ∈ ]0, ε0 ∧ ε′− ε?[ and P-a.a. (y1:n)n.

1 For any ζ > 0, πε?+ε
y1:n

[
T( · ) ≥ ε? + ζ

]
≥

δ

‖g‖1
π
[
T( · ) ≥ ε? + ζ

]
.

2 πε?+ε
y1:n

[
H \ argminH T( · )

]
≥

δ

‖g‖1
π
[
H \ argminH T( · )

]
.
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Thanks for your attention!
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