On the Mathematical Foundation of ABC A Robust Set for Estimating Mechanistic Network Models

> Marco Tarsia Daniele Cassani and Antonietta Mira

University of Insubria Dipartimento di Scienza e Alta Tecnologia

COSTNET final meeting 2020

24 September 2020

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020 1 / 14

Presentation plan

The four sections and the main references

A mathematical frame for ABC
 A convergence result for ε↓0
 Optimal transport theory in ABC
 Some lower bounds for n→∞

- E. Bernton, P.E. Jacob, M. Gerber, C.P. Robert. Approximate Bayesian computation with the Wasserstein distance. J. R. Statist. Soc. B (2019). Vol. 81, Issue 2, pp. 235–269.
- S.A. Sisson, Y. Fan, M.A. Beaumont. Handbook of Approximate Bayesian Computation. Chapman & Hall/CRC, Handbooks of Modern Statistical Methods, 2019.
- C. Villani. Optimal Transport. Old and New. Springer, 2009.

Marco Tarsia (Insubria - DiSAT)

Underlying probability space: $(\Omega, \mathcal{A}, \mathbf{P})$. Dimensions: $d_Y, d_Y, n \in \mathbb{N}^* = \mathbb{N} \setminus \{0\}$. Observations: $y^{\pm n}(\omega) = y^{\pm n} = (y^{\pm}, \dots, y^n) \in \mathcal{Y}^n, \omega \in \Omega$, where $\mathcal{Y} \subseteq \mathbb{R}^{d_Y}$ has metric a_Y . Predimeters $\mathcal{Y} \in \mathcal{H}$, where $\mathcal{Y} \subseteq \mathbb{R}^{d_Y}$ has metric a_Y .

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of X \mathscr{P} the class of the probability measures on $\mathcal{B}(X)$; $\mathcal{B}(X,Y)$ the class of the measureble functions $(X, \mathcal{B}(X)) \rightarrow (Y, \mathcal{B}(Y))$. We write $\forall d \in \mathcal{H}$ meaning $\forall d \in \mathcal{H} [\pi]$ (for π -a.a. $d \in \mathcal{H}$).

Axiom [A0-a]

The model $\{\mu_{\vartheta}^{n}\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^{1}, \ldots, z^{n}) \in \mathcal{Y}^{n}$ with $z^{1:n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_{\psi}^{n}$ in $\mathcal{Y}^{n}, \widetilde{\forall} \ \psi \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}^{n} .

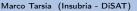
 $\forall \ \vartheta \in \mathcal{H}, \ \mathcal{Y}^n_\vartheta := \{ \ z^{1,n} \in \mathcal{Y}^n \ | \ z^{1,n} \leftarrow \mu^n_\vartheta \}, \ \forall \ \varepsilon > 0, \ D' = \{ \ z^{1,n} \in \mathcal{Y}^n \ | \ \mathcal{D}(y^{1,n}, z^{1,n}) \leq \varepsilon \}$

Axiom [A0-b] (under A0-a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

 $\int_{\Omega} dG |P_{n}^{2}| \pi(d\theta) > 0 \ (i.e. \neq 0).$

Regarding the whole continuation, we assume that A0 - a and A0 - b wort



イロン イロン イヨン イヨン

Underlying probability space: $(\Omega, \mathcal{A}, \mathsf{P})$. Dimensions: $d_{\mathcal{Y}}, d_{\mathcal{H}}, n \in \mathbb{N}^* = \mathbb{N} \setminus \{0\}$. Observations: $y^{\pm n}(\omega) = y^{\pm n} = (y^{\pm}, \dots, y^n) \in \mathcal{Y}^n, \omega \in \Omega$, where $\mathcal{Y} \subseteq \mathbb{R}^{d_{\mathcal{Y}}}$ has metric $\sigma_{\mathcal{Y}}$. Parameters: $\mathcal{Y} \in \mathcal{H}$, where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\sigma_{\mathcal{Y}}$.

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of X \mathscr{P} the class of the probability measures on $\mathcal{B}(X)$; $\mathcal{B}(X,Y)$ the class of the measured functions $(X, \mathcal{B}(X)) \rightarrow (Y, \mathcal{B}(Y))$. We write $\forall d \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H} [\pi]$ (for π -a.a. $\vartheta \in \mathcal{H}$).

Axiom [A0-a]

The model $\{\mu_{\vartheta}^{n}\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^{1}, \ldots, z^{n}) \in \mathcal{Y}^{n}$ with $z^{1:n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_{\eta}^n$ in $\mathcal{Y}^n, \widetilde{\forall} \ \vartheta \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}^n .

 $\forall \ \vartheta \in \mathcal{H}, \ \mathcal{Y}^n_\vartheta := \{ \ \boldsymbol{z^{1:n}} \in \mathcal{Y}^n \ | \ \boldsymbol{z^{1:n}} \leftarrow \mu^n_\vartheta \}, \ \forall \ \varepsilon > \boldsymbol{0}, \ D \} = \{ \ \boldsymbol{z^{1:n}} \in \mathcal{Y}^n \ | \ \mathcal{D}(\boldsymbol{y^{1:n}}, \boldsymbol{z^{1:n}}) \leq \varepsilon \}$

Axiom [A0-b] (under A0-a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

 $|| (b, u_0^* | P_n^*) | \tau(d\theta) > 0 (i.e. \neq 0)$

Regarding the whole continuation, we assume that A0 - a and A0 - b wort

(ロ)(相)((国)())

COSEDPE

Underlying probability space: $(\Omega, \mathcal{A}, \mathsf{P})$. Dimensions: $d_{\mathcal{Y}}, d_{\mathcal{H}}, n \in \mathbb{N}^* = \mathbb{N} \setminus \{0\}$. Observations: $y^{1:n}(\omega) \equiv y^{1:n} = (y^1, \ldots, y^n) \in \mathcal{Y}^n, \ \omega \in \Omega$, where $\mathcal{Y} \subseteq \mathbb{R}^{d_{\mathcal{Y}}}$ has metric $\varrho_{\mathcal{Y}}$. Parameters $\mathcal{Y} \in \mathcal{H}$, where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\varrho_{\mathcal{Y}}$.

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of \mathscr{P} with class of the probability measures on $\mathcal{B}(X)$; $\mathcal{D}(X)$ the class of the measureble functions $(X, \mathcal{B}(X)) \to (Y, \mathcal{B}(Y))$. We write $\mathcal{D}(X)$ meaning $\forall \ \vartheta \in \mathcal{H} \ [\pi]$ (or π -a.a. $\vartheta \in \mathcal{H}$).

Axiom [A0-a]

The model $\{\mu_{\theta}^{n}\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^{1}, \ldots, z^{n}) \in \mathcal{Y}^{n}$ with $z^{1:n} \sim \mu_{\theta}^{n}$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_{\psi}^{n}$ in $\mathcal{Y}^{n}, \widetilde{\forall} \ \psi \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}^{n} .

 $\forall \ \vartheta \in \mathcal{H}, \ \mathcal{Y}^n_\vartheta \coloneqq \{ x^{1:n} \in \mathcal{Y}^n \mid x^{1:n} \leftarrow \mu^n_\vartheta \}, \ \forall \ \varepsilon > 0, \ D^*_* = \{ x^{1:n} \in \mathcal{Y}^n \mid \mathcal{D}(y^{1:n}, x^{1:n}) \leq \varepsilon \}$

Axiom [A0-b] (under A0-a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

Regarding the whole continuation, we assume that A0 - a and A0 - b wort

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020 3 / 14

イロン イボン イヨン イヨ

Underlying probability space: $(\Omega, \mathcal{A}, \mathsf{P})$. Dimensions: $d_{\mathcal{Y}}, d_{\mathcal{H}}, n \in \mathbb{N}^* = \mathbb{N} \setminus \{0\}$. Observations: $y^{1:n}(\omega) \equiv y^{1:n} = (y^1, \ldots, y^n) \in \mathcal{Y}^n, \ \omega \in \Omega$, where $\mathcal{Y} \subseteq \mathbb{R}^{d_{\mathcal{Y}}}$ has metric $\varrho_{\mathcal{Y}}$. Parameters: $\vartheta \in \mathcal{H}$, where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\varrho_{\mathcal{H}}$.

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of X \mathscr{D} topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the class of the probability measures on $\mathcal{B}(X)$; $\mathcal{D}(X)$ the class of the measureble functions $(X, \mathcal{B}(X)) \to (Y, \mathcal{B}(Y))$. We write $\forall \ \vartheta \in \mathcal{H}$ meaning $\forall \ \vartheta \in \mathcal{H} \ [\pi]$ (for π -a.a. $\vartheta \in \mathcal{H}$).

Axiom [A0-a]

The model $\{\mu_{\vartheta}^{n}\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^{1}, \ldots, z^{n}) \in \mathcal{Y}^{n}$ with $z^{1:n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_{\psi}^{n}$ in $\mathcal{Y}^{n}, \widetilde{\forall} \ \psi \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}^{n} .

 $\forall \ \vartheta \in \mathcal{H}, \ \mathcal{Y}^n_\vartheta \coloneqq \{ \ z^{1:n} \in \mathcal{Y}^n \ \big| \ z^{1:n} \in \mu^n_\vartheta \}, \ \forall \ \varepsilon > 0, \ D^*_i = \{ \ z^{1:n} \in \mathcal{Y}^n \ \big| \ \mathcal{D}(y^{1:n}, z^{1:n}) \le \varepsilon \}$

Axiom [A0-b] (under A0-a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

 $|| - [i_{c} \mu_{s}^{s} | D_{c}^{s} | \pi(d\sigma) > 0 \text{ (i.e. } \neq 0).$

Regarding the whole continuation, we assume that A0 - a and A0 - b wort

(日)(周)(日)(日)(日)

COSEDPE

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X)$; $\mathscr{B}(X, Y)$ the class of the measurable functions $(X, \mathcal{B}(X)) \to (Y, \mathcal{B}(Y))$. We write $f = \mathcal{H}$ meaning $\forall \ \vartheta \in \mathcal{H} \ [\pi]$ (for π -a.a. $\vartheta \in \mathcal{H}$).

Axiom [A0 - a]

The model $\{\mu_{\vartheta}^{n}\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^{1}, \ldots, z^{n}) \in \mathcal{Y}^{n}$ with $z^{1:n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_{\psi}^{n}$ in $\mathcal{Y}^{n}, \widetilde{\forall} \ \psi \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}^{n} .

 $\forall \ \vartheta \in \mathcal{H}, \ \mathcal{Y}^n_\vartheta := \{ \ z^{1:n} \in \mathcal{Y}^n \ \big| \ z^{1:n} \sim \mu^n_\vartheta \ \}, \ \forall \ \varepsilon > 0, \ D^*_i := \{ \ z^{1:n} \in \mathcal{Y}^n \ \big| \ \mathcal{D}(y^{1:n}, z^{1:n}) \le \varepsilon \}$

Axiom [A0-b] (under A0-a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

 $|| - [i_{ee} \mu_{ee}^{\alpha}] P_{ee}^{\alpha}|_{\pi} (d\theta) > 0 \ (i_{ee} \neq 0).$

Regarding the whole continuation, we assume that A0 - a and A0 - b wort

イロン イボン イヨン イヨ

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X)$; $\mathscr{B}(X,Y)$ the class of the measurable functions $(X, \mathcal{B}(X)) \to (Y, \mathcal{B}(Y))$. We write $\forall v \in \mathcal{H}$ meaning $\forall v \in \mathcal{H} [\pi]$ (for π -a.a. $v \in \mathcal{H}$).

Axiom [A0-a]

The model $\{\mu_{\vartheta}^{n}\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^{1}, \ldots, z^{n}) \in \mathcal{Y}^{n}$ with $z^{1:n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_{\psi}^{n}$ in $\mathcal{Y}^{n}, \widetilde{\forall} \ \psi \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}^{n} .

 $\forall \ \vartheta \in \mathcal{H}, \ \mathcal{Y}^n_\vartheta := \{ \ z^{1,n} \in \mathcal{Y}^n \ \big| \ z^{1,n} \sim \mu^n_\vartheta \ \}, \ \forall \ \varepsilon > 0, \ D^*_i = \{ \ z^{1,n} \in \mathcal{Y}^n \ \big| \ \mathcal{D}(y^{1,n}, z^{1,n}) \le \varepsilon \}$

Axiom [A0-b] (under A0-a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

 $|| [h_{\alpha} \mu_{\alpha}^{\alpha}] P_{\alpha}^{\alpha}|_{\pi} (d\theta) > 0 \ (h_{\alpha} \neq 0).$

Regarding the whole continuation, we assume that A0 - a and A0 - b wort

Mathematical Foundation of ABC

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X)$; $\mathscr{B}(X,Y)$ the class of the measurable functions $(X,\mathcal{B}(X)) \to (Y,\mathcal{B}(Y))$. We write reduct the meaning $\forall \ \vartheta \in \mathcal{H} \ [\pi]$ (for reduct $\vartheta \in \mathcal{H}$).

Axiom [A0 - a]

The model $\{\mu_{\vartheta}^{n}\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^{1}, \ldots, z^{n}) \in \mathcal{Y}^{n}$ with $z^{1:n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_n^n$ in $\mathcal{Y}^n, \widetilde{\forall} \ v \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}^n

 $\forall \ \vartheta \in \mathcal{H}, \ \mathcal{Y}^n_\vartheta \coloneqq \{ z^{1:n} \in \mathcal{Y}^n \mid z^{1:n} \sim \mu^n_\vartheta \}, \ \forall \ \varepsilon > 0, \ D' \coloneqq \{ z^{1:n} \in \mathcal{Y}^n \mid \mathcal{D}(y^{1:n}, z^{1:n}) \leq \varepsilon \}$

Axiom [A0-b] (under A0-a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

 $[-[i_{c},\mu_{s}^{\alpha}]D_{c}^{\alpha}]\pi(d\vartheta) > 0$ (i.e. $\neq 0$).

Regarding the whole continuation, we assume that A0 - a and A0 - b wort

イロン イボン イヨン イヨ

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X)$; $\mathscr{B}(X,Y)$ the class of the measurable functions $(X,\mathcal{B}(X)) \to (Y,\mathcal{B}(Y))$. We write $\forall \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H} [\pi]$ (for π -a.a. $\vartheta \in \mathcal{H}$).

Axiom [A0-a]

The model $\{\mu_{\vartheta}^n\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^1, \ldots, z^n) \in \mathcal{Y}^n$ with $z^{1:n} \sim \mu_{\vartheta}^n$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_{\vartheta}^n$ in $\mathcal{Y}^n, \widetilde{\forall} \ \vartheta \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}'

Axiom [A0-b] (under A0-a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

 $[-[h_{c} \mu_{c}^{c}]P_{c}^{c}]\pi(d\theta) > 0$ (i.e. $\neq 0$).

Regarding the whole continuation, we assume that A0 - a and A0 - b world

(日)(周)(日)(日)(日)

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X)$; $\mathscr{B}(X,Y)$ the class of the measurable functions $(X,\mathcal{B}(X)) \to (Y,\mathcal{B}(Y))$. We write $\forall \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H} [\pi]$ (for π -a.a. $\vartheta \in \mathcal{H}$).

Axiom [A0-a]

The model $\{\mu_{\vartheta}^{n}\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^{1}, \ldots, z^{n}) \in \mathcal{Y}^{n}$ with $z^{1:n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_{\vartheta}^n$ in $\mathcal{Y}^n, \forall \ \vartheta \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}^{\prime}

Axiom [A0 - b] (under A0 - a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

The function $\vartheta \mapsto \mu_0^2[D_2^n]$, to be seen as defined rease, belongs to $\mathcal{B}(\mathcal{H}_1[0, 1])$ = $\int_{\mathcal{H}} \mu_0^2[D_2^n] \pi(d\vartheta) > 0$ (i.e. $\neq 0$).

Regarding the whole continuation, we assume that A0 - a and A0 - b wor

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020 3 / 14

rnsh**ne**h

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X)$; $\mathscr{B}(X,Y)$ the class of the measurable functions $(X,\mathcal{B}(X)) \to (Y,\mathcal{B}(Y))$. We write $\forall \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H} [\pi]$ (for π -a.a. $\vartheta \in \mathcal{H}$).

Axiom [A0-a]

The model $\{\mu_{\vartheta}^{n}\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^{1}, \ldots, z^{n}) \in \mathcal{Y}^{n}$ with $z^{1:n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_{\vartheta}^{n}$ in $\mathcal{Y}^{n}, \, \widetilde{\forall} \, \vartheta \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}^{n} .

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \mathcal{Y}^n_{\vartheta} \coloneqq \left\{ \left. z^{1:n} \in \mathcal{Y}^n \right| \ z^{1:n} \sim \mu^n_{\vartheta} \right\}, \ \forall \ \varepsilon > 0, \ \mathcal{O}^n_{\varepsilon} \coloneqq \left\{ \left. z^{1:n} \in \mathcal{Y}^n \right| \ \mathcal{D}(y^{1:n}, z^{1:n}) \le \right. \right\}$

Axiom [A0 - b] (under A0 - a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

[4] The function # (-), ρ₀[(2)], to be more an defined mean, i.e. belongs to *M*(20, [0, 1]).

Regarding the whole continuation, we assume that A0 - a and A0 - b wor

(ロ) (同) (ヨ) (ヨ)

rnsh**ne**h

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X)$; $\mathscr{B}(X,Y)$ the class of the measurable functions $(X,\mathcal{B}(X)) \to (Y,\mathcal{B}(Y))$. We write $\forall \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H} [\pi]$ (for π -a.a. $\vartheta \in \mathcal{H}$).

Axiom [A0-a]

The model $\{\mu_{\vartheta}^{n}\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^{1}, \ldots, z^{n}) \in \mathcal{Y}^{n}$ with $z^{1:n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_{\vartheta}^{n}$ in $\mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}^{n} .

 $\widetilde{orall} artheta \in \mathcal{H}, \ \mathcal{Y}^n_artheta \coloneqq \{ z^{1:n} \in \mathcal{Y}^n \mid z^{1:n} \sim \mu^n_artheta \}, \ orall arepsilon > 0, \ D^n_arepsilon \coloneqq \{ z^{1:n} \in \mathcal{Y}^n \mid \mathcal{D}(y^{1:n}, z^{1:n}) \leq arepsilon \}$

Axiom [A0 - b] (under A0 - a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

The function $\vartheta \mapsto \mu_0^2[P_0^*]$, to be seen as defined π -a.s., belongs to $\vartheta^0(\theta_0^*[0, 1])$, $\int_{\Omega} \mu_0^2[P_0^*] \pi(d\theta) > 0$ (i.e. $\phi(0)$.

Regarding the whole continuation, we assume that A0 - a and A0 - b wor

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

(ロ) (同) (ヨ) (ヨ)

rnsh**ne**h

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X)$; $\mathscr{B}(X,Y)$ the class of the measurable functions $(X,\mathcal{B}(X)) \to (Y,\mathcal{B}(Y))$. We write $\forall \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H} [\pi]$ (for π -a.a. $\vartheta \in \mathcal{H}$).

Axiom [A0-a]

The model $\{\mu_{\vartheta}^{n}\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^{1}, \ldots, z^{n}) \in \mathcal{Y}^{n}$ with $z^{1:n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_{\vartheta}^n$ in \mathcal{Y}^n , $\widetilde{\forall} \vartheta \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}^n .

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \mathcal{Y}^n_{\vartheta} \coloneqq \left\{ \ z^{1:n} \in \mathcal{Y}^n \ \middle| \ z^{1:n} \sim \mu^n_{\vartheta} \ \right\}. \ \forall \ \varepsilon > 0, \ D^n_{\varepsilon} \coloneqq \left\{ \ z^{1:n} \in \mathcal{Y}^n \ \middle| \ \mathcal{D}(y^{1:n}, z^{1:n}) \le \varepsilon \ \right\}.$

Axiom [A0 - b] (under A0 - a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

In [] the function $d \rightarrow d_1(\beta_1(\beta_2))$ to be seen as defined $\pi \rightarrow d_2$, indexing to $d\theta(\beta_1(\beta_1,\beta_1))$ [] [] $\mu_1(\beta_2) = (\mu_1(\beta_1) > 0$ () $\mu_2 \geq 0$]

Regarding the whole continuation, we assume that A0 - a and A0 - b wor

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

(ロ) (同) (ヨ) (ヨ)

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X)$; $\mathscr{B}(X,Y)$ the class of the measurable functions $(X,\mathcal{B}(X)) \to (Y,\mathcal{B}(Y))$. We write $\forall \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H} [\pi]$ (for π -a.a. $\vartheta \in \mathcal{H}$).

Axiom [A0-a]

The model $\{\mu_{\vartheta}^{n}\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^{1}, \ldots, z^{n}) \in \mathcal{Y}^{n}$ with $z^{1:n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_{\vartheta}^n$ in \mathcal{Y}^n , $\widetilde{\forall} \vartheta \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}^n .

$$\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \mathcal{Y}^n_{\vartheta} \coloneqq \left\{ \ z^{1:n} \in \mathcal{Y}^n \ \middle| \ z^{1:n} \sim \mu^n_{\vartheta} \ \right\}. \ \forall \ \varepsilon > 0, \ \mathcal{D}^n_{\varepsilon} \coloneqq \left\{ \ z^{1:n} \in \mathcal{Y}^n \ \middle| \ \mathcal{D}(y^{1:n}, z^{1:n}) \le \varepsilon \right\}.$$

Axiom [A0 - b] (under A0 - a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

The function $\vartheta \mapsto \mu_{0}^{*}[D_{\tau}^{0}]$, to be seen as defined π -a.s., belongs to $\mathscr{B}(\mathcal{H}, [0, 1])$, $\int_{\Omega_{\tau}} \mu_{0}^{*}[D_{\tau}^{0}] *(d\vartheta) > 0 \ (1.4.4.4.0)$.

Regarding the whole continuation, we assume that A0 - a and A0 - b wor

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

(日)

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X)$; $\mathscr{B}(X,Y)$ the class of the measurable functions $(X,\mathcal{B}(X)) \to (Y,\mathcal{B}(Y))$. We write $\forall \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H} [\pi]$ (for π -a.a. $\vartheta \in \mathcal{H}$).

Axiom [A0-a]

The model $\{\mu_{\vartheta}^{n}\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^{1}, \ldots, z^{n}) \in \mathcal{Y}^{n}$ with $z^{1:n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_{\vartheta}^n$ in \mathcal{Y}^n , $\widetilde{\forall} \vartheta \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}^n .

$$\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \mathcal{Y}^n_\vartheta \coloneqq \left\{ \ z^{1:n} \in \mathcal{Y}^n \ \middle| \ z^{1:n} \sim \mu^n_\vartheta \ \right\}. \ \forall \ \varepsilon > 0, \ \mathcal{D}^n_\varepsilon \coloneqq \left\{ \ z^{1:n} \in \mathcal{Y}^n \ \middle| \ \mathcal{D}(y^{1:n}, z^{1:n}) \le \varepsilon \right\}.$$

Axiom [A0 - b] (under A0 - a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

(日)

COSENet

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X)$; $\mathscr{B}(X,Y)$ the class of the measurable functions $(X,\mathcal{B}(X)) \to (Y,\mathcal{B}(Y))$. We write $\forall \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H} [\pi]$ (for π -a.a. $\vartheta \in \mathcal{H}$).

Axiom [A0-a]

The model $\{\mu_{\vartheta}^{n}\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^{1}, \ldots, z^{n}) \in \mathcal{Y}^{n}$ with $z^{1:n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_{\vartheta}^n$ in \mathcal{Y}^n , $\widetilde{\forall} \ \vartheta \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}^n .

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \mathcal{Y}^n_\vartheta \coloneqq \left\{ \ z^{1:n} \in \mathcal{Y}^n \ \middle| \ z^{1:n} \sim \mu^n_\vartheta \right\}. \ \forall \ \varepsilon > 0, \ \mathcal{D}^n_\varepsilon \coloneqq \left\{ \ z^{1:n} \in \mathcal{Y}^n \ \middle| \ \mathcal{D}(y^{1:n}, z^{1:n}) \le \varepsilon \right\}.$

Axiom [A0-b] (under A0-a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

1 The function $\vartheta \mapsto \mu_{\vartheta}^n[D_{\varepsilon}^n]$, to be seen as defined π -a.s., belongs to $\mathscr{B}(\mathcal{H}, [0, 1])$. 2 $\int_{\mathcal{M}} \mu_{\vartheta}^n[D_{\varepsilon}^n] \pi(\mathrm{d}\vartheta) > 0$ (i.e. $\neq 0$).

► Regarding the whole continuation, we assume that A0 - a and A0 - b worth.

(日)(月)((日)((日))((日))

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X)$; $\mathscr{B}(X,Y)$ the class of the measurable functions $(X,\mathcal{B}(X)) \to (Y,\mathcal{B}(Y))$. We write $\forall \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H} [\pi]$ (for π -a.a. $\vartheta \in \mathcal{H}$).

Axiom [A0-a]

The model $\{\mu_{\vartheta}^{n}\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^{1}, \ldots, z^{n}) \in \mathcal{Y}^{n}$ with $z^{1:n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_{\vartheta}^n$ in \mathcal{Y}^n , $\widetilde{\forall} \ \vartheta \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}^n .

$$\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \underline{\mathcal{Y}_{\vartheta}^n} \coloneqq \left\{ \ z^{1:n} \in \mathcal{Y}^n \ \middle| \ z^{1:n} \sim \mu_{\vartheta}^n \ \right\}. \ \forall \ \varepsilon > 0, \ \underline{\mathcal{D}_{\varepsilon}^n} \coloneqq \left\{ \ z^{1:n} \in \mathcal{Y}^n \ \middle| \ \mathcal{D}(y^{1:n}, z^{1:n}) \le \varepsilon \right\}.$$

Axiom [A0 - b] (under A0 - a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

The function ϑ ↦ μⁿ_ϑ[Dⁿ_ε], to be seen as defined π-a.s., belongs to ℬ(ℋ, [0, 1]).
 ∫_ℋ μⁿ_ϑ[Dⁿ_ε] π(dϑ) > 0 (i.e. ≠ 0).

Regarding the whole continuation, we assume that A0 - a and A0 - b wort

(ロ) (同) (ヨ) (ヨ)

COSENet

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X)$; $\mathscr{B}(X,Y)$ the class of the measurable functions $(X,\mathcal{B}(X)) \to (Y,\mathcal{B}(Y))$. We write $\forall \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H} [\pi]$ (for π -a.a. $\vartheta \in \mathcal{H}$).

Axiom [A0-a]

The model $\{\mu_{\vartheta}^{n}\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^{1}, \ldots, z^{n}) \in \mathcal{Y}^{n}$ with $z^{1:n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_{\vartheta}^n$ in \mathcal{Y}^n , $\widetilde{\forall} \ \vartheta \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}^n .

$$\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \underline{\mathcal{Y}_{\vartheta}^n} \coloneqq \left\{ \ z^{1:n} \in \mathcal{Y}^n \ \middle| \ z^{1:n} \sim \mu_{\vartheta}^n \ \right\}. \ \forall \ \varepsilon > 0, \ \underline{\mathcal{D}_{\varepsilon}^n} \coloneqq \left\{ \ z^{1:n} \in \mathcal{Y}^n \ \middle| \ \mathcal{D}(y^{1:n}, z^{1:n}) \le \varepsilon \right\}.$$

Axiom [A0 - b] (under A0 - a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

The function ϑ ↦ μⁿ_ϑ[Dⁿ_ε], to be seen as defined π-a.s., belongs to ℬ(ℋ, [0, 1]).
 ∫_ℋ μⁿ_ϑ[Dⁿ_ε] π(dϑ) > 0 (i.e. ≠ 0).

Regarding the whole continuation, we assume that A0 - a and A0 - b wort

(ロ) (同) (ヨ) (ヨ)

COSENet

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ -algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X)$; $\mathscr{B}(X,Y)$ the class of the measurable functions $(X,\mathcal{B}(X)) \to (Y,\mathcal{B}(Y))$. We write $\forall \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H} [\pi]$ (for π -a.a. $\vartheta \in \mathcal{H}$).

Axiom [A0-a]

The model $\{\mu_{\vartheta}^{n}\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\forall \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1:n} = (z^{1}, \ldots, z^{n}) \in \mathcal{Y}^{n}$ with $z^{1:n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1:n} \sim \mu_{\vartheta}^n$ in \mathcal{Y}^n , $\widetilde{\forall} \ \vartheta \in \mathcal{H}$. Deviation measure: \mathcal{D} , pseudo-metric on \mathcal{Y}^n .

$$\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \underline{\mathcal{Y}_{\vartheta}^n} \coloneqq \left\{ \ z^{1:n} \in \mathcal{Y}^n \ \middle| \ z^{1:n} \sim \mu_{\vartheta}^n \ \right\}. \ \forall \ \varepsilon > 0, \ \underline{\mathcal{D}_{\varepsilon}^n} \coloneqq \left\{ \ z^{1:n} \in \mathcal{Y}^n \ \middle| \ \mathcal{D}(y^{1:n}, z^{1:n}) \le \varepsilon \right\}.$$

Axiom [A0 - b] (under A0 - a)

There exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in]0, \varepsilon_0[$, the two following conditions hold.

The function ϑ → μⁿ_ϑ[Dⁿ_ε], to be seen as defined π-a.s., belongs to ℬ(ℋ, [0, 1]).
 ∫_ℋ μⁿ_ϑ[Dⁿ_ε] π(dϑ) > 0 (i.e. ≠ 0).

Regarding the whole continuation, we assume that <u>A0-a and A0-b</u> worth.

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

(日)

costnet

ABC thresholds: any $\varepsilon \in]0, \varepsilon_0[$. ABC rejection algorithms: hereunder.

(i) Choose $\varepsilon \in]0, \varepsilon_0[$. (ii) Draw $\vartheta \in \mathcal{H}$ by π and $z^{1:n} \in \mathcal{Y}^n_{\vartheta}$. (iii) Keep ϑ if, and only if, $z^{1:n} \in D^n_{\varepsilon}$.

ABC posteriors: $\pi_{1,1}^{\epsilon} \ll \pi, \forall \epsilon \in]0, \epsilon_0[$, whose density is proportional to $\mu_{(1,1)}^{\epsilon}[D_{\epsilon_1}^{\epsilon_1}] \neq B \in \mathcal{B}(H)$

Axiom [A0-c]

For any $Y \in \mathcal{B}(\mathcal{Y}^n)$, $\mu_{(+)}^n[Y] \in \mathscr{B}(\mathcal{H}, [0, 1])$ (coherently w.r.t. A0-b).

Model for the true posterior (under A0-c): for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $B \in \mathcal{B}(\mathcal{H})$ with $\pi[B] > 0$,

he corresponding posterior: for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $\mathcal{B} \in \mathcal{B}(\mathcal{H})$, whenever it makes sense

 $Y] = \frac{\int_{B} \mu_{\vartheta}^{n}[Y] \, \pi(\mathrm{d}\vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta'}^{n}[Y] \, \pi(\mathrm{d}\vartheta')}.$

Therefore, the *true* posterior would be

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020 4 / 14

ABC thresholds: any $\varepsilon \in]0, \varepsilon_0[$. ABC rejection algorithms: hereunder.

(i) Choose $\varepsilon \in]0, \varepsilon_0[$. (ii) Draw $\vartheta \in \mathcal{H}$ by π and $z^{1:n} \in \mathcal{Y}^n_{\vartheta}$. (iii) Keep ϑ if, and only if, $z^{1:p} \in D^n_{\varepsilon}$.

ABC posteriors: $\pi_{1,n}^{\epsilon} \ll \pi, \forall \epsilon \in]0, \epsilon_0[$, whose density is proportional to $\mu_{(1)}^{\epsilon}[D_{\epsilon}^{n}]: \forall B \in \mathcal{B}(H)$

Axiom [A0-c]

For any $Y \in \mathcal{B}(\mathcal{Y}^n)$, $\mu_{(+)}^n[Y] \in \mathscr{B}(\mathcal{H}, [0, 1])$ (coherently w.r.t. A0-b).

Model for the true posterior (under A0-c): for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $B \in \mathcal{B}(\mathcal{H})$ with $\pi[B] > 0$,

he corresponding posterior: for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $\mathcal{B} \in \mathcal{B}(\mathcal{H})$, whenever it makes sense

 $Y] = \frac{\int_{B} \mu_{\vartheta}^{n}[Y] \, \pi(\mathrm{d}\vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta'}^{n}[Y] \, \pi(\mathrm{d}\vartheta')}.$

Therefore, the *true posterior* would be

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020 4 / 14

ABC thresholds: any $\varepsilon \in]0, \varepsilon_0[$. ABC rejection algorithms: hereunder.

(i) Choose $\varepsilon \in]0, \varepsilon_0[$. (ii) Draw $\vartheta \in \mathcal{H}$ by π and $z^{1:n} \in \mathcal{Y}^n_{\vartheta}$. (iii) Keep ϑ if, and only if, $z^{1:n} \in D^n_{\varepsilon}$.

ABC posteriors: $\pi_{(+)}^{\varepsilon} \ll \pi, \forall \epsilon \in]0, \epsilon_0[$, whose density is proportional to $\mu_{(+)}^n[D_{\epsilon}^n]: \forall B \in \mathcal{B}(H)$

Axiom [A0-c]

For any $Y \in \mathcal{B}(\mathcal{Y}^n)$, $\mu_{(+)}^n[Y] \in \mathscr{B}(\mathcal{H}, [0, 1])$ (coherently w.r.t. A0-b).

Model for the true posterior (under A0-c): for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $B \in \mathcal{B}(\mathcal{H})$ with $\pi[B] > 0$,

he corresponding posterior: for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $\mathcal{B} \in \mathcal{B}(\mathcal{H})$, whenever it makes sense

 $Y] = \frac{\int_{B} \mu_{\vartheta}^{n}[Y] \, \pi(\mathrm{d}\vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta}^{n}[Y] \, \pi(\mathrm{d}\vartheta')}.$

Therefore, the *true posterior* would be

Marco Tarsia (Insubria - DiSAT)

ABC thresholds: any $\varepsilon \in]0, \varepsilon_0[$. ABC rejection algorithms: hereunder.

(i) Choose $\varepsilon \in]0, \varepsilon_0[$. (ii) Draw $\vartheta \in \mathcal{H}$ by π and $z^{1:n} \in \mathcal{Y}^n_{\vartheta}$. (iii) Keep ϑ if, and only if, $z^{1:p} \in D^n_{\vartheta}$.

ABC posteriors: $\pi_{v^{1:n}}^{\varepsilon} \ll \pi, \forall \varepsilon \in]0, \varepsilon_0[$, whose density is proportional to $\mu_{(+)}^n[D_{\varepsilon}^n]: \forall B \in \mathcal{B}(H)$

 $\pi^arepsilon_{y^{\mathbf{1}:n}}[B] = rac{\int_B \mu^n_artheta[D^n_arepsilon] \, \pi(\mathrm{d}artheta)}{\int_\mathcal{H} \mu^n_{artheta'}[D^n_arepsilon] \, \pi(\mathrm{d}artheta')}.$

Axiom [A0 - c]

For any $Y \in \mathcal{B}(\mathcal{Y}^n)$, $\mu_{(+)}^n[Y] \in \mathscr{B}(\mathcal{H}, [0, 1])$ (coherently w.r.t. A0-b).

Model for the true posterior (under A0-c): for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $B \in \mathcal{B}(\mathcal{H})$ with $\pi[B] > 0$,

 $Y[B] \doteq \frac{1}{\pi[B]} \int_{B} \mu_{\vartheta}^{n}[Y] \pi(\mathsf{d}\vartheta).$

he corresponding posterior: for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $B \in \mathcal{B}(\mathcal{H})$, whenever it makes sense

 $Y_{\mathbf{i}} = \frac{\int_{B} \mu_{\vartheta}^{n}[Y] \, \pi(\mathrm{d}\vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta'}^{n}[Y] \, \pi(\mathrm{d}\vartheta')}.$

Therefore, the *true posterior* would be

Marco Tarsia (Insubria - DiSAT)

ABC thresholds: any $\varepsilon \in]0, \varepsilon_0[$. ABC rejection algorithms: hereunder.

(i) Choose $\varepsilon \in]0, \varepsilon_0[$. (ii) Draw $\vartheta \in \mathcal{H}$ by π and $z^{1:n} \in \mathcal{Y}_{\vartheta}^n$. (iii) Keep ϑ if, and only if, $z^{1:n} \in D_{\varepsilon}^n$.

ABC posteriors: $\pi_{\epsilon,1:n}^{\varepsilon} \ll \pi, \forall \varepsilon \in]0, \varepsilon_0[$, whose density is proportional to $\mu_{\epsilon,1}^n[D_{\varepsilon}^n]: \forall B \in \mathcal{B}(H)$

 $\pi^arepsilon_{y^{\mathbf{1}:n}}[B] = rac{\int_B \mu^n_artheta[D^n_arepsilon] \, \pi(\mathrm{d}artheta)}{\int_\mathcal{H} \mu^n_{artheta'}[D^n_arepsilon] \, \pi(\mathrm{d}artheta')}.$

Axiom [A0 - c]

For any $Y \in \mathcal{B}(\mathcal{Y}^n)$, $\mu_{(+)}^n[Y] \in \mathscr{B}(\mathcal{H}, [0, 1])$ (coherently w.r.t. A0-b).

Model for the true posterior (under A0-c): for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $B \in \mathcal{B}(\mathcal{H})$ with $\pi[B] > 0$,

 $Y|B] \stackrel{:}{=} \frac{1}{\pi[B]} \int_{B} \mu_{\vartheta}^{n}[Y] \pi(\mathsf{d}\vartheta).$

he corresponding posterior: for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $B \in \mathcal{B}(\mathcal{H})$, whenever it makes sense

 $Y] = \frac{\int_{B} \mu_{\vartheta}^{n}[Y] \, \pi(\mathrm{d}\vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta'}^{n}[Y] \, \pi(\mathrm{d}\vartheta')}.$

Therefore, the *true posterior* would be

Marco Tarsia (Insubria - DiSAT)

ABC thresholds: any $\varepsilon \in]0, \varepsilon_0[$. ABC rejection algorithms: hereunder.

(i) Choose $\varepsilon \in]0, \varepsilon_0[$. (ii) Draw $\vartheta \in \mathcal{H}$ by π and $z^{1:n} \in \mathcal{Y}^n_{\vartheta}$. (iii) Keep ϑ if, and only if, $z^{1:n} \in D^n_{\varepsilon}$.

ABC posteriors: $\pi_{v^{1:n}}^{\varepsilon} \ll \pi$, $\forall \varepsilon \in]0, \varepsilon_0[$, whose density is proportional to $\mu_{(\cdot)}^n[D_{\varepsilon}^n]$: $\forall B \in \mathcal{B}(H)$,

$$\pi_{y^{\mathbf{1}:n}}^{\varepsilon}[B] = \frac{\int_{B} \mu_{\vartheta}^{n}[D_{\varepsilon}^{n}] \pi(\mathsf{d}\vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta'}^{n}[D_{\varepsilon}^{n}] \pi(\mathsf{d}\vartheta')}$$

Axiom [A0 - c]

For any $Y \in \mathcal{B}(\mathcal{Y}^n)$, $\mu_{(+)}^n[Y] \in \mathscr{B}(\mathcal{H}, [0, 1])$ (coherently w.r.t. A0-b).

Model for the true posterior (under A0-c): for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $B \in \mathcal{B}(\mathcal{H})$ with $\pi[B] > 0$,

$$\mathsf{P}[Y|B] \doteq rac{1}{\pi[B]} \int_B \mu^n_artheta[Y] \, \pi(\mathsf{d}artheta).$$

The corresponding posterior: for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $\mathcal{B} \in \mathcal{B}(\mathcal{H})$, whenever it makes sense

$$Y] = \frac{\int_{B} \mu_{\vartheta}^{n}[Y] \, \pi(\mathrm{d}\vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta'}^{n}[Y] \, \pi(\mathrm{d}\vartheta')}.$$

Therefore, the *true posterior* would be

costnet

Marco Tarsia (Insubria - DiSAT)

(i) Choose $\varepsilon \in]0, \varepsilon_0[$. (ii) Draw $\vartheta \in \mathcal{H}$ by π and $z^{1:n} \in \mathcal{Y}^n_{\vartheta}$. (iii) Keep ϑ if, and only if, $z^{1:n} \in D^n_{\varepsilon}$.

ABC posteriors: $\pi_{v^{1:n}}^{\varepsilon} \ll \pi$, $\forall \varepsilon \in]0, \varepsilon_0[$, whose density is proportional to $\mu_{(\cdot)}^n[D_{\varepsilon}^n]$: $\forall B \in \mathcal{B}(H)$,

$$\pi_{y^{\mathbf{1}:n}}^{\varepsilon}[B] = \frac{\int_{B} \mu_{\vartheta}^{n}[D_{\varepsilon}^{n}] \pi(\mathsf{d}\vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta'}^{n}[D_{\varepsilon}^{n}] \pi(\mathsf{d}\vartheta')}$$

Axiom [A0 - c]

For any $Y \in \mathcal{B}(\mathcal{Y}^n)$, $\mu_{(\cdot)}^n[Y] \in \mathscr{B}(\mathcal{H}, [0, 1])$ (coherently w.r.t. A0-b).

Model for the true posterior (under A0-c): for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $B \in \mathcal{B}(\mathcal{H})$ with $\pi[B] > 0$,

$$\mathsf{P}[Y|B] \doteq rac{1}{\pi[B]} \int_B \mu_{artheta}^n[Y] \, \pi(\mathsf{d}artheta).$$

The corresponding posterior: for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $B \in \mathcal{B}(\mathcal{H})$, whenever it makes sense

$$\pi[B|Y] = \frac{\int_{B} \mu_{\vartheta}^{n}[Y] \pi(\mathrm{d}\vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta'}^{n}[Y] \pi(\mathrm{d}\vartheta')}.$$

Therefore, the *true posterior* would be

Marco Tarsia (Insubria - DiSAT)

(i) Choose $\varepsilon \in]0, \varepsilon_0[$. (ii) Draw $\vartheta \in \mathcal{H}$ by π and $z^{1:n} \in \mathcal{Y}^n_{\vartheta}$. (iii) Keep ϑ if, and only if, $z^{1:n} \in D^n_{\varepsilon}$.

ABC posteriors: $\pi_{v^{1:n}}^{\varepsilon} \ll \pi$, $\forall \varepsilon \in]0, \varepsilon_0[$, whose density is proportional to $\mu_{(\cdot)}^n[D_{\varepsilon}^n]$: $\forall B \in \mathcal{B}(H)$,

$$\pi_{y^{\mathbf{1}:n}}^{\varepsilon}[B] = \frac{\int_{B} \mu_{\vartheta}^{n}[D_{\varepsilon}^{n}] \pi(\mathsf{d}\vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta'}^{n}[D_{\varepsilon}^{n}] \pi(\mathsf{d}\vartheta')}$$

Axiom [A0 - c]

For any $Y \in \mathcal{B}(\mathcal{Y}^n)$, $\mu_{(\cdot)}^n[Y] \in \mathscr{B}(\mathcal{H}, [0, 1])$ (coherently w.r.t. A0-b).

Model for the true posterior (under A0-c): for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $B \in \mathcal{B}(\mathcal{H})$ with $\pi[B] > 0$,

$$\mathsf{P}[\mathsf{Y}|B] \doteq \frac{1}{\pi[B]} \int_{B} \mu_{\vartheta}^{n}[\mathsf{Y}] \, \pi(\mathsf{d}\vartheta).$$

The corresponding posterior: for $Y\in \mathcal{B}(\mathcal{Y}^n)$ and $B\in \mathcal{B}(\mathcal{H})$, whenever it makes sense

$$\pi[B|Y] = \frac{\int_{B} \mu_{\vartheta}^{n}[Y] \pi(\mathrm{d}\vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta'}^{n}[Y] \pi(\mathrm{d}\vartheta')}$$

Therefore, the *true posterior* would be

$$\pi[\cdot|y^{1:n}] \coloneqq \pi[\cdot|\{y^{1:n}\}]$$

Marco Tarsia (Insubria - DiSAT)

(i) Choose $\varepsilon \in]0, \varepsilon_0[$. (ii) Draw $\vartheta \in \mathcal{H}$ by π and $z^{1:n} \in \mathcal{Y}^n_{\vartheta}$. (iii) Keep ϑ if, and only if, $z^{1:n} \in D^n_{\varepsilon}$.

ABC posteriors: $\pi_{v^{1:n}}^{\varepsilon} \ll \pi$, $\forall \varepsilon \in]0, \varepsilon_0[$, whose density is proportional to $\mu_{(\cdot)}^n[D_{\varepsilon}^n]$: $\forall B \in \mathcal{B}(H)$,

$$\pi_{y^{\mathbf{1}:n}}^{\varepsilon}[B] = \frac{\int_{B} \mu_{\vartheta}^{n}[D_{\varepsilon}^{n}] \pi(\mathsf{d}\vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta'}^{n}[D_{\varepsilon}^{n}] \pi(\mathsf{d}\vartheta')}$$

Axiom [A0 - c]

For any $Y \in \mathcal{B}(\mathcal{Y}^n)$, $\mu_{(\cdot)}^n[Y] \in \mathscr{B}(\mathcal{H}, [0, 1])$ (coherently w.r.t. A0-b).

Model for the true posterior (under A0-c): for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $B \in \mathcal{B}(\mathcal{H})$ with $\pi[B] > 0$,

$$\mathsf{P}[\mathsf{Y}|B] \doteq \frac{1}{\pi[B]} \int_{B} \mu_{\vartheta}^{n}[\mathsf{Y}] \, \pi(\mathsf{d}\vartheta).$$

The corresponding posterior: for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $B \in \mathcal{B}(\mathcal{H})$, whenever it makes sense,

$$\pi[B|Y] = \frac{\int_B \mu_{\vartheta}^n[Y] \pi(\mathsf{d}\vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta'}^n[Y] \pi(\mathsf{d}\vartheta')}.$$

Therefore, the *true posterior* would be

Marco Tarsia (Insubria - DiSAT)

(i) Choose $\varepsilon \in]0, \varepsilon_0[$. (ii) Draw $\vartheta \in \mathcal{H}$ by π and $z^{1:n} \in \mathcal{Y}^n_{\vartheta}$. (iii) Keep ϑ if, and only if, $z^{1:n} \in D^n_{\varepsilon}$.

ABC posteriors: $\pi_{v^{1:n}}^{\varepsilon} \ll \pi$, $\forall \varepsilon \in]0, \varepsilon_0[$, whose density is proportional to $\mu_{(\cdot)}^n[D_{\varepsilon}^n]$: $\forall B \in \mathcal{B}(H)$,

$$\pi_{y^{\mathbf{1}:n}}^{\varepsilon}[B] = \frac{\int_{B} \mu_{\vartheta}^{n}[D_{\varepsilon}^{n}] \pi(\mathsf{d}\vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta'}^{n}[D_{\varepsilon}^{n}] \pi(\mathsf{d}\vartheta')}$$

Axiom [A0 - c]

For any $Y \in \mathcal{B}(\mathcal{Y}^n)$, $\mu_{(\cdot)}^n[Y] \in \mathscr{B}(\mathcal{H}, [0, 1])$ (coherently w.r.t. A0-b).

Model for the true posterior (under A0-c): for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $B \in \mathcal{B}(\mathcal{H})$ with $\pi[B] > 0$,

$$\mathsf{P}[\mathsf{Y}|B] \doteq \frac{1}{\pi[B]} \int_{B} \mu_{\vartheta}^{n}[\mathsf{Y}] \, \pi(\mathsf{d}\vartheta).$$

The corresponding posterior: for $Y \in \mathcal{B}(\mathcal{Y}^n)$ and $B \in \mathcal{B}(\mathcal{H})$, whenever it makes sense,

$$\pi[B|Y] = \frac{\int_B \mu_{\vartheta}^n[Y] \pi(\mathsf{d}\vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta'}^n[Y] \pi(\mathsf{d}\vartheta')}.$$

Therefore, the true posterior would be

$$\pi[\cdot|y^{1:n}] \coloneqq \pi[\cdot|\{y^{1:n}\}].$$

Marco Tarsia (Insubria - DiSAT)

We denote by $\mathbf{m} := \mathbf{m}^{d_{\mathcal{Y}} \cdot n}$ the Lebesgue measure on $\mathcal{B}(\mathbb{R}^{d_{\mathcal{Y}} \cdot n})$.

Axiom [A1]

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}$, the two following conditions hold.

 $\boxed{\quad} \mu_{\theta}^{n} \ll \mathsf{m} \text{ with } f_{\theta}^{n} \coloneqq \mathsf{d} \mu_{\theta}^{n} / \mathsf{d} \mathsf{m} \text{ such that, } \forall z^{1:n} \in \mathcal{Y}^{n} [\mathsf{m}], f_{(+)}^{n}(z^{1:n}) \in \mathscr{B}(\mathcal{H}, \mathbb{R}_{+}).$

 $f_{ij}^{n}(\cdot)$ is continuous and $f_{ij}^{n}(r^{1,n})$ is not π -a.s. identically zero.

1 of A1 implies A0- c while 2 of A1 ensures that $\int_{\mathcal{H}} f_{\vartheta}^{n}(y^{1:n}) \pi(d\vartheta) > 0$ (eventually co).

There exist $\delta, \overline{\varepsilon} \in]0, \infty[$ and $g \in L^1(\pi)$ with $g \ge \delta \ [\pi]$ all such that, $\widetilde{\forall} \ \vartheta \in \mathcal{H}$,

 $\delta \leq \sup_{z^{\mathbf{1}:n}\in D^n_{arepsilon}} f^n_artheta(z^{\mathbf{1}:n}) \leq g(artheta).$

following generalization of A2 and work. Axiom (A2) (under A1) There exist $g \in L^1(\pi)$ with g > 0 [π] and $\varepsilon \in]0, \infty[$ such that, for any $\varepsilon \in]0, \mathbb{Z}_{\varepsilon}$ there exists $\delta_{\varepsilon} \in]0, \infty[$ such that, $\forall \vartheta \in \mathcal{H}$,

Marco Tarsia (Insubria - DiSAT)

We denote by $\mathbf{m} := \mathbf{m}^{d_{\mathcal{Y}} \cdot n}$ the Lebesgue measure on $\mathcal{B}(\mathbb{R}^{d_{\mathcal{Y}} \cdot n})$.

Axiom [A1]

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}$, the two following conditions hold.

 $f_{A}^{n}(\cdot)$ is continuous and $f_{i}^{n}(y^{1:n})$ is not π -a.s. identically zero.

1 of A1 implies A0-c while 2 of A1 ensures that $\int_{\mathcal{H}} f_{\vartheta}^{n}(y^{1:n}) \pi(d\vartheta) > 0$ (eventually ∞). Axiom [A2] (under A1)

There exist $\delta, \overline{\varepsilon} \in]0, \infty[$ and $g \in L^1(\pi)$ with $g \geq \delta$ $[\pi]$ all such that, $\widetilde{\forall} \ \vartheta \in \mathcal{H}$,

 $\delta \leq \sup_{z^{\mathbf{1}:n}\in D^n_arepsilon} f^n_artheta(z^{\mathbf{1}:n}) \leq g(artheta).$

Axiom $[\widetilde{A2}^1]$ (under A1) There exist $g \in L^1(\pi)$ with g > 0 [π] and $\varepsilon \in]0, \infty[$ such that, for any $\varepsilon \in]0, \mathbb{Z}_r$, there exists $\delta_r \in]0, \infty[$ such that, $\forall \ \vartheta \in \mathcal{H}$,

Marco Tarsia (Insubria - DiSAT)

-nshaeh

We denote by $\mathbf{m} := \mathbf{m}^{d_{\mathcal{Y}} \cdot n}$ the Lebesgue measure on $\mathcal{B}(\mathbb{R}^{d_{\mathcal{Y}} \cdot n})$.

Axiom [A1]

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}$, the two following conditions hold.

 $1 \quad \mu_{\vartheta}^n \ll \mathsf{m} \text{ with } \mathbf{f}_{\vartheta}^n \coloneqq \mathsf{d}\mu_{\vartheta}^n/\mathsf{d}\mathsf{m} \text{ such that, } \widetilde{\forall} \ z^{1:n} \in \mathcal{Y}^n \ [\mathsf{m}], \ \mathbf{f}_{(\cdot)}^n(z^{1:n}) \in \mathscr{B}(\mathcal{H}, \mathbb{R}_+).$

 $f^n_{\vartheta}(\cdot)$ is continuous and $f^n_{(\cdot)}(y^{1:n})$ is not π -a.s. identically zero.

1 of A1 implies A0- c while 2 of A1 ensures that $\int_{\mathcal{H}} f_{\vartheta}^{n}(y^{1,n}) \pi(\mathrm{d}\vartheta) > 0$ (eventually co).

```
Axiom [A2] (under A1)
```

There exist $\delta, \overline{\varepsilon} \in]0, \infty[$ and $g \in L^1(\pi)$ with $g \geq \delta$ $[\pi]$ all such that, $\widetilde{\forall} \ \vartheta \in \mathcal{H}$,

 $\delta \leq \sup_{z^{\mathbf{1}:n} \in D^n_{arepsilon}} f^n_{artheta}(z^{\mathbf{1}:n}) \leq g(artheta).$

Axiom $(\widetilde{A2})$ (under A1) There exist $g \in L^1(\pi)$ with g > 0 $[\pi]$ and $\delta \in]0, \infty[$ such that, for any $\varepsilon \in]0, \gamma$, there exists $\delta_{\varepsilon} \in]0, \infty[$ such that, $\widetilde{\forall} \ \vartheta \in \mathcal{H}$,

Marco Tarsia (Insubria - DiSAT)

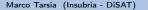
We denote by $\mathbf{m} := \mathbf{m}^{d_{\mathcal{Y}} \cdot n}$ the Lebesgue measure on $\mathcal{B}(\mathbb{R}^{d_{\mathcal{Y}} \cdot n})$.

Axiom [A1]

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}$, the two following conditions hold.

 $1 \quad \mu_{\vartheta}^n \ll \mathsf{m} \text{ with } \mathbf{f}_{\vartheta}^n \coloneqq \mathsf{d}\mu_{\vartheta}^n/\mathsf{d}\mathsf{m} \text{ such that, } \widetilde{\forall} \ z^{1:n} \in \mathcal{Y}^n \ [\mathsf{m}], \ \mathbf{f}_{(\cdot)}^n(z^{1:n}) \in \mathscr{B}(\mathcal{H}, \mathbb{R}_+).$

2 $f_{\vartheta}^{n}(\cdot)$ is continuous and $f_{(\cdot)}^{n}(y^{1:n})$ is not π -a.s. identically zero.



We denote by $\mathbf{m} \coloneqq \mathbf{m}^{d_{\mathcal{Y}} \cdot n}$ the Lebesgue measure on $\mathcal{B}(\mathbb{R}^{d_{\mathcal{Y}} \cdot n})$.

Axiom [A1]

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}$, the two following conditions hold.

 $1 \quad \mu_{\vartheta}^n \ll \mathsf{m} \text{ with } \mathbf{f}_{\vartheta}^n \coloneqq \mathsf{d}\mu_{\vartheta}^n/\mathsf{d}\mathsf{m} \text{ such that, } \widetilde{\forall} \ z^{1:n} \in \mathcal{Y}^n \ [\mathsf{m}], \ \mathbf{f}_{(\cdot)}^n(z^{1:n}) \in \mathscr{B}(\mathcal{H}, \mathbb{R}_+).$

2 $f_{\vartheta}^{n}(\cdot)$ is continuous and $f_{(\cdot)}^{n}(y^{1:n})$ is not π -a.s. identically zero.

Lof A1 implies A0-c while 2 of A1 ensures that $\int_{\mathcal{H}} f^n_\vartheta(y^{1:n}) \, \pi(\mathsf{d} artheta) > 0$ (eventually ∞).

```
Axiom [A2] (under A1]
```

There exist $\delta, \overline{\varepsilon} \in]0, \infty[$ and $g \in L^1(\pi)$ with $g \ge \delta$ [π] all such that, $\forall \ \vartheta \in \mathcal{H}$,

 $\delta \leq \sup_{z^{\mathbf{1}:n}\in D^n_{ar{arepsilon}}} f^n_artheta(z^{\mathbf{1}:n}) \leq g(artheta).$

Axiom (A2) (under A1) There exist $g \in L^1(\pi)$ with g > 0 [π] and $\delta \in]0, \infty[$ such that, for any $\varepsilon \in]0, \varepsilon[$ such that, $\breve{\forall} \vartheta \in \mathcal{H}$,

Marco Tarsia (Insubria - DiSAT)

We denote by $\mathbf{m} \coloneqq \mathbf{m}^{d_{\mathcal{Y}} \cdot n}$ the Lebesgue measure on $\mathcal{B}(\mathbb{R}^{d_{\mathcal{Y}} \cdot n})$.

Axiom [A1]

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}$, the two following conditions hold.

 $1 \quad \mu_{\vartheta}^n \ll \mathsf{m} \text{ with } \mathbf{f}_{\vartheta}^n \coloneqq \mathsf{d}\mu_{\vartheta}^n/\mathsf{d}\mathsf{m} \text{ such that, } \widetilde{\forall} \ z^{1:n} \in \mathcal{Y}^n \ [\mathsf{m}], \ \mathbf{f}_{(\,\cdot\,)}^n(z^{1:n}) \in \mathscr{B}(\mathcal{H},\mathbb{R}_+).$

2 $f_{\vartheta}^{n}(\cdot)$ is continuous and $f_{(\cdot)}^{n}(y^{1:n})$ is not π -a.s. identically zero.

1 of A1 implies A0-c while 2 of A1 ensures that $\int_{\mathcal{H}} f_{\vartheta}^n(y^{1:n}) \pi(d\vartheta) > 0$ (eventually ∞).

```
Axiom [A2] (under A1)
```

There exist $\delta, \bar{\varepsilon} \in]0, \infty[$ and $g \in L^1(\pi)$ with $g \ge \delta$ [π] all such that, $\forall \ \vartheta \in \mathcal{H}$,

 $\delta \leq \sup_{z^{\mathbf{1}:n}\in D^n_{arepsilon}} f^n_{artheta}(z^{\mathbf{1}:n}) \leq g(artheta).$

Axiom [A21 (under A1) There exist $g \in L^1(\pi)$ with g > 0 [π] and $\ell \in]0, \infty$ [such that, for any $\varepsilon \in [0, \infty]$, there exists $\delta_{\varepsilon} \in [0, \infty]$ such that, $\forall \vartheta \in \mathcal{H}$,

Marco Tarsia (Insubria - DiSAT)

We denote by $\mathbf{m} \coloneqq \mathbf{m}^{d_{\mathcal{Y}} \cdot n}$ the Lebesgue measure on $\mathcal{B}(\mathbb{R}^{d_{\mathcal{Y}} \cdot n})$.

Axiom [A1]

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}$, the two following conditions hold.

 $1 \quad \mu_{\vartheta}^n \ll \mathsf{m} \text{ with } \mathbf{f}_{\vartheta}^n \coloneqq \mathsf{d}\mu_{\vartheta}^n/\mathsf{d}\mathsf{m} \text{ such that, } \widetilde{\forall} \ z^{1:n} \in \mathcal{Y}^n \ [\mathsf{m}], \ \mathbf{f}_{(\cdot)}^n(z^{1:n}) \in \mathscr{B}(\mathcal{H}, \mathbb{R}_+).$

2 $f_{\vartheta}^n(\cdot)$ is continuous and $f_{(\cdot)}^n(y^{1:n})$ is not π -a.s. identically zero.

1 of A1 implies A0-c while 2 of A1 ensures that $\int_{\mathcal{H}} f_{\vartheta}^n(y^{1:n}) \pi(d\vartheta) > 0$ (eventually ∞).

Axiom [A2] (under A1)

There exist $\delta, \overline{\varepsilon} \in]0, \infty[$ and $g \in L^1(\pi)$ with $g \ge \delta$ [π] all such that, $\widetilde{\forall} \ \vartheta \in \mathcal{H}$,

$$\delta \leq \sup_{z^{\mathbf{1}:n} \in D^n_{\bar{\varepsilon}}} f^n_{\vartheta}(z^{\mathbf{1}:n}) \leq g(\vartheta).$$

The implies $f^{(n)}(x^{(n)}) \in L^1(\pi)$ with $L^1(\pi)$ -norm lower of equal than $\|v\|_{L^\infty} = \|g\|_{L^\infty}^{\infty}$. As a following generalization of A2 could work. **Axiom [A2]** (under A1) There exist $g \in L^1(\pi)$ with g > 0 [π] and $f \in]0, \infty$ [such that, for any $\varepsilon \in [0, \infty]$, there exists $\delta \in [0, \infty]$ such that, $\forall \vartheta \in \mathcal{H}$,

We denote by $\mathbf{m} := \mathbf{m}^{d_{\mathcal{Y}} \cdot n}$ the Lebesgue measure on $\mathcal{B}(\mathbb{R}^{d_{\mathcal{Y}} \cdot n})$.

Axiom [A1]

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}$, the two following conditions hold.

 $1 \quad \mu_{\vartheta}^n \ll \mathsf{m} \text{ with } \mathbf{f}_{\vartheta}^n \coloneqq \mathsf{d}\mu_{\vartheta}^n/\mathsf{d}\mathsf{m} \text{ such that, } \widetilde{\forall} \ z^{1:n} \in \mathcal{Y}^n \ [\mathsf{m}], \ \mathbf{f}_{(\,\cdot\,)}^n(z^{1:n}) \in \mathscr{B}(\mathcal{H},\mathbb{R}_+).$

2 $f_{\vartheta}^n(\cdot)$ is continuous and $f_{(\cdot)}^n(y^{1:n})$ is not π -a.s. identically zero.

1 of A1 implies A0-c while 2 of A1 ensures that $\int_{\mathcal{H}} f_{\vartheta}^n(y^{1:n}) \pi(d\vartheta) > 0$ (eventually ∞).

Axiom [A2] (under A1)

There exist $\delta, \overline{\varepsilon} \in]0, \infty[$ and $g \in L^1(\pi)$ with $g \ge \delta$ [π] all such that, $\widetilde{\forall} \ \vartheta \in \mathcal{H}$,

$$\delta \leq \sup_{z^{\mathbf{1}:n} \in D^n_{\bar{\varepsilon}}} f^n_{\vartheta}(z^{\mathbf{1}:n}) \leq g(\vartheta).$$

A2 would imply 2 of A0-b employing any ε₀ ∈]0, ε̄].
 A2 implies fⁿ₍₋₎(y^{1,n}) ∈ L¹(π) with L¹(π)-norm lower or equal than ||g||₁ = ||g||_{L¹(π)}.
 Even the following generalization of A2 would work.
 Aximple (A2) (under the cost of C (n)) with g = 0 [n] and d ∈ [0, ∞] such that, for any g ∈ [0, ∞] there exists a ∈ [0, ∞] such that y ϑ ∈ H.

Marco Tarsia (Insubria - DiSAT) Mathematical Foundation of ABC 24 Se

We denote by $\mathbf{m} \coloneqq \mathbf{m}^{d_{\mathcal{Y}} \cdot n}$ the Lebesgue measure on $\mathcal{B}(\mathbb{R}^{d_{\mathcal{Y}} \cdot n})$.

Axiom [A1]

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}$, the two following conditions hold.

 $1 \quad \mu_{\vartheta}^n \ll \mathsf{m} \text{ with } \mathbf{f}_{\vartheta}^n \coloneqq \mathsf{d}\mu_{\vartheta}^n/\mathsf{d}\mathsf{m} \text{ such that, } \widetilde{\forall} \ z^{1:n} \in \mathcal{Y}^n \ [\mathsf{m}], \ \mathbf{f}_{(\,\cdot\,)}^n(z^{1:n}) \in \mathscr{B}(\mathcal{H},\mathbb{R}_+).$

2 $f_{\vartheta}^n(\cdot)$ is continuous and $f_{(\cdot)}^n(y^{1:n})$ is not π -a.s. identically zero.

1 of A1 implies A0-c while 2 of A1 ensures that $\int_{\mathcal{H}} f_{\vartheta}^n(y^{1:n}) \pi(d\vartheta) > 0$ (eventually ∞).

Axiom [A2] (under A1)

There exist $\delta, \overline{\varepsilon} \in]0, \infty[$ and $g \in L^1(\pi)$ with $g \ge \delta$ [π] all such that, $\widetilde{\forall} \ \vartheta \in \mathcal{H}$,

$$\delta \leq \sup_{z^{\mathbf{1}:n} \in D_{\varepsilon}^{n}} f_{\vartheta}^{n}(z^{\mathbf{1}:n}) \leq g(\vartheta).$$

• A2 would imply 2 of A0-b employing any $\varepsilon_0 \in]0, \overline{\varepsilon}]$.

• A2 implies $f_{(\cdot)}^n(y^{1:n}) \in L^1(\pi)$ with $L^1(\pi)$ -norm lower or equal than $\|g\|_1 := \|g\|_{L^1(\pi)}$.

Even the following generalization of A2 would work.

Axiom (A21) (under A1) There exist $g \in L^1(\pi)$ with g > 0 [π] and $z \in [0, \infty]$ such that, for any $\varepsilon \in [0, \infty]$, there exists $\delta \in [0, \infty]$ such that, $\forall \ \vartheta \in \mathcal{H}$,

We denote by $\mathbf{m} \coloneqq \mathbf{m}^{d_{\mathcal{Y}} \cdot n}$ the Lebesgue measure on $\mathcal{B}(\mathbb{R}^{d_{\mathcal{Y}} \cdot n})$.

Axiom [A1]

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}$, the two following conditions hold.

 $1 \quad \mu_{\vartheta}^n \ll \mathsf{m} \text{ with } \mathbf{f}_{\vartheta}^n \coloneqq \mathsf{d}\mu_{\vartheta}^n/\mathsf{d}\mathsf{m} \text{ such that, } \widetilde{\forall} \ z^{1:n} \in \mathcal{Y}^n \ [\mathsf{m}], \ \mathbf{f}_{(\,\cdot\,)}^n(z^{1:n}) \in \mathscr{B}(\mathcal{H},\mathbb{R}_+).$

2 $f_{\vartheta}^n(\cdot)$ is continuous and $f_{(\cdot)}^n(y^{1:n})$ is not π -a.s. identically zero.

1 of A1 implies A0-c while 2 of A1 ensures that $\int_{\mathcal{H}} f_{\vartheta}^n(y^{1:n}) \pi(d\vartheta) > 0$ (eventually ∞).

Axiom [A2] (under A1)

There exist $\delta, \overline{\varepsilon} \in]0, \infty[$ and $g \in L^1(\pi)$ with $g \ge \delta$ [π] all such that, $\widetilde{\forall} \ \vartheta \in \mathcal{H}$,

$$\delta \leq \sup_{z^{\mathbf{1}:n} \in D_{\varepsilon}^{n}} f_{\vartheta}^{n}(z^{\mathbf{1}:n}) \leq g(\vartheta).$$

- A2 would imply 2 of A0-b employing any $\varepsilon_0 \in]0, \overline{\varepsilon}]$.
- A2 implies $f_{(\cdot)}^n(y^{1:n}) \in L^1(\pi)$ with $L^1(\pi)$ -norm lower or equal than $\|g\|_1 := \|g\|_{L^1(\pi)}$.
- Even the following generalization of A2 would work.

Axiom [A2] (under A1) There exist $g \in L^1(\pi)$ with g > 0 [π] and $\hat{\varepsilon} \in]0, \infty[$ such that, for any $\varepsilon \in]0, \tilde{\varepsilon}[$, there exists $\delta_{\varepsilon} \in]0, \infty[$ such that, $\forall \vartheta \in \mathcal{H}$,

 $\delta_{\varepsilon} \leq \sup_{1 \le n \le \infty} f_{\vartheta}^n(z^{1:n}) \leq g(\vartheta)$

We denote by $\mathbf{m} \coloneqq \mathbf{m}^{d_{\mathcal{Y}} \cdot n}$ the Lebesgue measure on $\mathcal{B}(\mathbb{R}^{d_{\mathcal{Y}} \cdot n})$.

Axiom [A1]

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}$, the two following conditions hold.

 $1 \quad \mu_{\vartheta}^n \ll \mathsf{m} \text{ with } \mathbf{f}_{\vartheta}^n \coloneqq \mathsf{d}\mu_{\vartheta}^n/\mathsf{d}\mathsf{m} \text{ such that, } \widetilde{\forall} \ z^{1:n} \in \mathcal{Y}^n \ [\mathsf{m}], \ \mathbf{f}_{(\,\cdot\,)}^n(z^{1:n}) \in \mathscr{B}(\mathcal{H},\mathbb{R}_+).$

2 $f_{\vartheta}^n(\cdot)$ is continuous and $f_{(\cdot)}^n(y^{1:n})$ is not π -a.s. identically zero.

1 of A1 implies A0-c while 2 of A1 ensures that $\int_{\mathcal{H}} f_{\vartheta}^n(y^{1:n}) \pi(d\vartheta) > 0$ (eventually ∞).

Axiom [A2] (under A1)

There exist $\delta, \overline{\varepsilon} \in]0, \infty[$ and $g \in L^1(\pi)$ with $g \ge \delta$ [π] all such that, $\widetilde{\forall} \ \vartheta \in \mathcal{H}$,

$$\delta \leq \sup_{z^{\mathbf{1}:n} \in D_{\varepsilon}^{n}} f_{\vartheta}^{n}(z^{\mathbf{1}:n}) \leq g(\vartheta).$$

- A2 would imply 2 of A0-b employing any $\varepsilon_0 \in]0, \overline{\varepsilon}]$.
- A2 implies $f_{(\cdot)}^n(y^{1:n}) \in L^1(\pi)$ with $L^1(\pi)$ -norm lower or equal than $\|g\|_1 := \|g\|_{L^1(\pi)}$.
- Even the following generalization of A2 would work.

Axiom [A2] (under A1) There exist $g \in L^1(\pi)$ with g > 0 [π] and $\hat{\varepsilon} \in]0, \infty[$ such that, for any $\varepsilon \in]0, \tilde{\varepsilon}[$, there exists $\delta_{\varepsilon} \in]0, \infty[$ such that, $\forall \vartheta \in \mathcal{H}$,

 $\delta_{\varepsilon} \leq \sup_{1 \le n \le \infty} f_{\vartheta}^n(z^{1:n}) \leq g(\vartheta)$

We denote by $\mathbf{m} := \mathbf{m}^{d_{\mathcal{Y}} \cdot n}$ the Lebesgue measure on $\mathcal{B}(\mathbb{R}^{d_{\mathcal{Y}} \cdot n})$.

Axiom [A1]

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}$, the two following conditions hold.

 $1 \quad \mu_{\vartheta}^n \ll \mathsf{m} \text{ with } f_{\vartheta}^n \coloneqq \mathsf{d}\mu_{\vartheta}^n/\mathsf{d}\mathsf{m} \text{ such that, } \widetilde{\forall} \ z^{1:n} \in \mathcal{Y}^n \ [\mathsf{m}], \ f_{(\cdot)}^n(z^{1:n}) \in \mathscr{B}(\mathcal{H}, \mathbb{R}_+).$

2 $f_{\vartheta}^n(\cdot)$ is continuous and $f_{(\cdot)}^n(y^{1:n})$ is not π -a.s. identically zero.

1 of A1 implies A0-c while 2 of A1 ensures that $\int_{\mathcal{H}} f_{\vartheta}^n(y^{1:n}) \pi(d\vartheta) > 0$ (eventually ∞).

Axiom [A2] (under A1)

There exist $\delta, \overline{\varepsilon} \in [0, \infty)$ and $g \in L^1(\pi)$ with $g \geq \delta[\pi]$ all such that, $\forall \theta \in \mathcal{H}$,

$$\delta \leq \sup_{z^{\mathbf{1}:n} \in D^n_{\bar{\varepsilon}}} f^n_{\vartheta}(z^{\mathbf{1}:n}) \leq g(\vartheta).$$

- A2 would imply 2 of A0-b employing any $\varepsilon_0 \in [0, \overline{\varepsilon}]$.
- A2 implies $f_{(\cdot)}^n(y^{1:n}) \in L^1(\pi)$ with $L^1(\pi)$ -norm lower or equal than $\|g\|_1 := \|g\|_{L^1(\pi)}$.
- Even the following generalization of A2 would work.

Axiom [A2] (under A1) There exist $g \in L^1(\pi)$ with g > 0 [π] and $\tilde{\varepsilon} \in [0, \infty]$ such that, for any $\varepsilon \in]0, \tilde{\varepsilon}[$, there exists $\delta_{\varepsilon} \in]0, \infty[$ such that, $\tilde{\forall} \ \vartheta \in \mathcal{H}$,

$$\delta_{\varepsilon} \leq \sup_{z^{1:n} \in D_{\varepsilon}^{n}} f_{\vartheta}^{n}(z^{1:n}) \leq g(\vartheta).$$

<<p>Image: 1

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \mathcal{D}(y^{1:n}, \cdot)^{-1}(0) \subseteq f_{\vartheta}^n(\, \cdot\,)^{-1}\big(f_{\vartheta}^n(y^{1:n})\big).$

In particular, if ${\cal D}$ is an actual metric, then A3 trivially holds.

Proposition

Under assumptions A1, A2 and A3, the three following conditions hold.

The ABC posterior strongly converges to the true posterior as $e \downarrow 0$: V $B \in \mathcal{B}(\mathcal{H})$

 $\pi^{\ell_{1m}}_{f^{1m}}[B] \rightarrow \pi[B|_{f^{1m}}] \cup as c \downarrow 0.$

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020 6 / 14

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \mathcal{D}(y^{1:n}, \cdot)^{-1}(0) \subseteq f_{\vartheta}^n(\cdot)^{-1}(f_{\vartheta}^n(y^{1:n})).$

In particular, if $\ensuremath{\mathcal{D}}$ is an actual metric, then A3 trivially holds.

Proposition

Under assumptions A1, A2 and A3, the three following conditions hold.

The ABC rejection algorithm and the ABC posterior are well defined for any $\varepsilon \in]0, \varepsilon_0 \vee \overline{\varepsilon}[$. The true posterior $\pi[\cdot | y^{\log}]$ makes sense and takes the following expression: $\forall \in B(\mathcal{H})$.

$$\pi(P(y^{1,0}) = \frac{\int_{B} G(y^{1,0}) \pi(dx^{0})}{\int_{B} G(y^{1,0}) \pi(dx^{0})}$$

The ABC posterior strongly converges to the true posterior as $e \downarrow 0$: Y $B \in B(\mathcal{H})$

$\pi_{f^{1,n}}^{\ell}[B] \rightarrow \pi[B|\gamma^{1,n}] \quad eec \downarrow 0.$

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020 6 / 14

-nsh**ne**h

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \mathcal{D}(y^{1:n}, \cdot)^{-1}(0) \subseteq f_{\vartheta}^{n}(\cdot)^{-1}(f_{\vartheta}^{n}(y^{1:n})).$

In particular, if \mathcal{D} is an actual metric, then A3 trivially holds.

Proposition

Under assumptions A1, A2 and A3, the three following conditions hold.

(N) $B \supset B \lor 0.1$, i.e. constants of the temperature of the temperature of the set of the temperature of tempe

costnet

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020 6 / 14

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \mathcal{D}(y^{1:n}, \cdot)^{-1}(0) \subseteq f_{\vartheta}^{n}(\cdot)^{-1}(f_{\vartheta}^{n}(y^{1:n})).$

In particular, if \mathcal{D} is an actual metric, then A3 trivially holds.

Proposition

Under assumptions A1, A2 and A3, the three following conditions hold.

1 The ABC rejection algorithm and the ABC posterior are well defined for any $\varepsilon \in]0, \varepsilon_0 \lor \overline{\varepsilon}[$.

The true posterior $\pi[\,\cdot\,|y^{1:n}]$ makes sense and takes the following expression: $orall \; B\in \mathcal{B}(\mathcal{H})$

$$\pi[B|\mathbf{y}^{1:n}] = \frac{\int_B f_{\vartheta}^n(\mathbf{y}^{1:n}) \,\pi(\mathrm{d}\vartheta)}{\int_{\mathcal{H}} f_{\vartheta'}^n(\mathbf{y}^{1:n}) \,\pi(\mathrm{d}\vartheta')}$$

The ABC posterior strongly converges to the true posterior as $\varepsilon \downarrow 0$: $\forall B \in \mathcal{B}(\mathcal{H})$,

$$\pi^{\varepsilon}_{y^{1:n}}[B] o \pi[B|y^{1:n}] \quad \text{as } \varepsilon \downarrow 0.$$

Marco Tarsia (Insubria - DiSAT)

-nsh**ne**h

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \mathcal{D}(y^{1:n}, \cdot)^{-1}(0) \subseteq f_{\vartheta}^{n}(\cdot)^{-1}(f_{\vartheta}^{n}(y^{1:n})).$

In particular, if \mathcal{D} is an actual metric, then A3 trivially holds.

Proposition

Under assumptions A1, A2 and A3, the three following conditions hold.

- **1** The ABC rejection algorithm and the ABC posterior are well defined for any $\varepsilon \in]0, \varepsilon_0 \lor \overline{\varepsilon}[.$
- **2** The true posterior $\pi[\cdot | y^{1:n}]$ makes sense and takes the following expression: $\forall B \in \mathcal{B}(\mathcal{H})$,

$$\pi[B|y^{1:n}] = \frac{\int_B f_{\vartheta}^n(y^{1:n}) \,\pi(\mathsf{d}\vartheta)}{\int_{\mathcal{H}} f_{\vartheta'}^n(y^{1:n}) \,\pi(\mathsf{d}\vartheta')}$$

The ABC posterior strongly converges to the true posterior as $arepsilon \downarrow 0$: $orall B \in \mathcal{B}(\mathcal{H})$,

$$\pi^{\varepsilon}_{y^{1:n}}[B] o \pi[B|y^{1:n}] \quad \text{as } \varepsilon \downarrow 0.$$

Marco Tarsia (Insubria - DiSAT)

COSENPE

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \mathcal{D}(y^{1:n}, \cdot)^{-1}(0) \subseteq f_{\vartheta}^{n}(\cdot)^{-1}(f_{\vartheta}^{n}(y^{1:n})).$

In particular, if \mathcal{D} is an actual metric, then A3 trivially holds.

Proposition

Under assumptions A1, A2 and A3, the three following conditions hold.

- **1** The ABC rejection algorithm and the ABC posterior are well defined for any $\varepsilon \in]0, \varepsilon_0 \lor \overline{\varepsilon}[.$
- **2** The true posterior $\pi[\cdot | y^{1:n}]$ makes sense and takes the following expression: $\forall B \in \mathcal{B}(\mathcal{H})$,

$$\pi[B|y^{1:n}] = \frac{\int_B f_{\vartheta}^n(y^{1:n}) \,\pi(\mathsf{d}\vartheta)}{\int_{\mathcal{H}} f_{\vartheta'}^n(y^{1:n}) \,\pi(\mathsf{d}\vartheta')}$$

3 The ABC posterior strongly converges to the true posterior as $\varepsilon \downarrow 0$: $\forall B \in \mathcal{B}(\mathcal{H})$,

$$\pi_{y^{\mathbf{1}:n}}^{\varepsilon}[B] \to \pi[B|y^{\mathbf{1}:n}] \quad \text{as } \varepsilon \downarrow 0.$$

Marco Tarsia (Insubria - DiSAT)

Let's visualize $(\mathcal{Y}, \varrho_{\mathcal{Y}})$ as a separable and complete metric space, thus also a Radon space, i.e. any element in $\mathscr{P}(\mathcal{Y})$ is a Radon probability measure (outer regular on Borel subsets and inner regular on open subsets); and let's choose an unit cost function $c: \mathcal{Y} \times \mathcal{Y} \to [0, \infty]$ which is lower semicontinuous (so Borel measurable) and a parameter $p \in [1, \infty[$ of summability.

We denote by $\mathscr{P}_{p}(\mathcal{Y})$ the subclass of $\mathscr{P}(\mathcal{Y})$ whose elements have finite p -th moment.

Kantorovich's formulation. For $\mu, \nu \in \mathscr{P}_p(\mathcal{Y})$, consider the subclass $\Gamma(\mu, \nu)$ of $\mathscr{P}(\mathcal{Y} \times \mathcal{Y})$ whose elements γ are the couplings with marginals μ and ν . Then the Kantorovich's formulation of the optimal transport problem related to $(\mathcal{Y}, \varrho_{\mathcal{Y}})$, c and ρ is

 $\mathcal{K}(\mu,\nu) \doteq \inf_{\gamma \in \Gamma(\mu,\nu)} \int_{\mathcal{Y} \times \mathcal{Y}} c(y,y') \, \mathrm{d}\gamma(y,y').$

It can be shown that there exists a minimizer $\gamma^* \in \Gamma(\mu, \nu)$ for such a problem which could be determined by means of gradient descent algorithms.

Example

For $c = (\varrho_{\mathcal{Y}})^p$, \mathcal{K} coincides with the *p*-power of the Wasserstein distance: $\mathcal{K} = \mathcal{W}_p^p$.

Marco Tarsia (Insubria - DiSAT)

Let's visualize $(\mathcal{Y}, \varrho_{\mathcal{Y}})$ as a separable and complete metric space, thus also a Radon space, i.e. any element in $\mathscr{P}(\mathcal{Y})$ is a Radon probability measure (outer regular on Borel subsets and inner regular on open subsets); and let's choose an unit cost function $c: \mathcal{Y} \times \mathcal{Y} \to [0, \infty]$ which is lower semicontinuous (so Borel measurable) and a parameter $p \in [1, \infty[$ of summability.

We denote by $\mathscr{P}_p(\mathcal{Y})$ the subclass of $\mathscr{P}(\mathcal{Y})$ whose elements have finite p-th moment.

Kantorovich's formulation. For $\mu, \nu \in \mathscr{P}_p(\mathcal{Y})$, consider the subclass $\Gamma(\mu, \nu)$ of $\mathscr{P}(\mathcal{Y} \times \mathcal{Y})$ whose elements γ are the couplings with marginals μ and ν . Then the Kantorovich's formulation of the optimal transport problem related to $(\mathcal{Y}, \varrho_{\mathcal{Y}})$, c and p is

$$\mathcal{K}(\mu, \nu) \doteq \inf_{\gamma \in \Gamma(\mu, \nu)} \int_{\mathcal{Y} \times \mathcal{Y}} c(y, y') \, \mathrm{d}\gamma(y, y').$$

It can be shown that there exists a minimizer $\gamma^* \in \Gamma(\mu, \nu)$ for such a problem which could be determined by means of gradient descent algorithms.

Example

For $c = (\varrho_{\mathcal{Y}})^p$, \mathcal{K} coincides with the *p*-power of the Wasserstein distance: $\mathcal{K} = \mathcal{W}_p^p$.

Marco Tarsia (Insubria - DiSAT)

Let's visualize $(\mathcal{Y}, \varrho_{\mathcal{Y}})$ as a separable and complete metric space, thus also a Radon space, i.e. any element in $\mathscr{P}(\mathcal{Y})$ is a Radon probability measure (outer regular on Borel subsets and inner regular on open subsets); and let's choose an unit cost function $c: \mathcal{Y} \times \mathcal{Y} \to [0, \infty]$ which is lower semicontinuous (so Borel measurable) and a parameter $p \in [1, \infty[$ of summability.

We denote by $\mathscr{P}_p(\mathcal{Y})$ the subclass of $\mathscr{P}(\mathcal{Y})$ whose elements have finite p-th moment.

Kantorovich's formulation. For $\mu, \nu \in \mathscr{P}_p(\mathcal{Y})$, consider the subclass $\Gamma(\mu, \nu)$ of $\mathscr{P}(\mathcal{Y} \times \mathcal{Y})$ whose elements γ are the couplings with marginals μ and ν . Then the Kantorovich's formulation of the optimal transport problem related to $(\mathcal{Y}, \rho_{\mathcal{Y}})$, c and p is

$$\mathcal{K}(\mu,\nu) \doteq \inf_{\gamma \in \Gamma(\mu,\nu)} \int_{\mathcal{Y} \times \mathcal{Y}} c(y,y') \, \mathsf{d}\gamma(y,y').$$

It can be shown that there exists a minimizer $\gamma^* \in \Gamma(\mu, \nu)$ for such a problem which could be determined by means of gradient descent algorithms.

Example

For $c = (\varrho_{\mathcal{Y}})^p$, \mathcal{K} coincides with the *p*-power of the Wasserstein distance: $\mathcal{K} = \mathcal{W}_p^p$.

Let's visualize $(\mathcal{Y}, \varrho_{\mathcal{Y}})$ as a separable and complete metric space, thus also a Radon space, i.e. any element in $\mathscr{P}(\mathcal{Y})$ is a Radon probability measure (outer regular on Borel subsets and inner regular on open subsets); and let's choose an unit cost function $c: \mathcal{Y} \times \mathcal{Y} \to [0, \infty]$ which is lower semicontinuous (so Borel measurable) and a parameter $p \in [1, \infty]$ of summability.

We denote by $\mathscr{P}_p(\mathcal{Y})$ the subclass of $\mathscr{P}(\mathcal{Y})$ whose elements have finite p-th moment.

Kantorovich's formulation. For $\mu, \nu \in \mathscr{P}_p(\mathcal{Y})$, consider the subclass $\Gamma(\mu, \nu)$ of $\mathscr{P}(\mathcal{Y} \times \mathcal{Y})$ whose elements γ are the couplings with marginals μ and ν . Then the Kantorovich's formulation of the optimal transport problem related to $(\mathcal{Y}, \varrho_{\mathcal{Y}})$, c and p is

$$\mathcal{K}(\mu, \nu) \doteq \inf_{\gamma \in \Gamma(\mu, \nu)} \int_{\mathcal{Y} \times \mathcal{Y}} c(y, y') \, \mathrm{d}\gamma(y, y').$$

It can be shown that there exists a minimizer $\gamma^* \in \Gamma(\mu, \nu)$ for such a problem which could be determined by means of gradient descent algorithms.

Example

For $c = (\varrho_{\mathcal{Y}})^p$, \mathcal{K} coincides with the *p*-power of the Wasserstein distance: $\mathcal{K} = \mathcal{W}_p^p$.

Marco Tarsia (Insubria - DiSAT)

Let's visualize $(\mathcal{Y}, \varrho_{\mathcal{Y}})$ as a separable and complete metric space, thus also a Radon space, i.e. any element in $\mathscr{P}(\mathcal{Y})$ is a Radon probability measure (outer regular on Borel subsets and inner regular on open subsets); and let's choose an unit cost function $c: \mathcal{Y} \times \mathcal{Y} \to [0, \infty]$ which is lower semicontinuous (so Borel measurable) and a parameter $p \in [1, \infty]$ of summability.

We denote by $\mathscr{P}_p(\mathcal{Y})$ the subclass of $\mathscr{P}(\mathcal{Y})$ whose elements have finite p-th moment.

Kantorovich's formulation. For $\mu, \nu \in \mathscr{P}_p(\mathcal{Y})$, consider the subclass $\Gamma(\mu, \nu)$ of $\mathscr{P}(\mathcal{Y} \times \mathcal{Y})$ whose elements γ are the couplings with marginals μ and ν . Then the Kantorovich's formulation of the optimal transport problem related to $(\mathcal{Y}, \varrho_{\mathcal{Y}})$, c and p is

$$\mathcal{K}(\mu,\nu) \doteq \inf_{\gamma \in \Gamma(\mu,\nu)} \int_{\mathcal{Y} \times \mathcal{Y}} c(y,y') \, \mathrm{d}\gamma(y,y').$$

It can be shown that there exists a minimizer $\gamma^* \in \Gamma(\mu, \nu)$ for such a problem which could be determined by means of gradient descent algorithms.

Example

For $c = (\varrho_{\mathcal{Y}})^p$, \mathcal{K} coincides with the *p*-power of the Wasserstein distance: $\mathcal{K} = \mathcal{W}_p^p$.

Marco Tarsia (Insubria - DiSAT)

Let's visualize $(\mathcal{Y}, \varrho_{\mathcal{Y}})$ as a separable and complete metric space, thus also a Radon space, i.e. any element in $\mathscr{P}(\mathcal{Y})$ is a Radon probability measure (outer regular on Borel subsets and inner regular on open subsets); and let's choose an unit cost function $c: \mathcal{Y} \times \mathcal{Y} \to [0, \infty]$ which is lower semicontinuous (so Borel measurable) and a parameter $p \in [1, \infty]$ of summability.

We denote by $\mathscr{P}_p(\mathcal{Y})$ the subclass of $\mathscr{P}(\mathcal{Y})$ whose elements have finite p-th moment.

Kantorovich's formulation. For $\mu, \nu \in \mathscr{P}_p(\mathcal{Y})$, consider the subclass $\Gamma(\mu, \nu)$ of $\mathscr{P}(\mathcal{Y} \times \mathcal{Y})$ whose elements γ are the couplings with marginals μ and ν . Then the Kantorovich's formulation of the optimal transport problem related to $(\mathcal{Y}, \varrho_{\mathcal{Y}})$, c and p is

$$\mathcal{K}(\mu,\nu) \doteq \inf_{\gamma \in \Gamma(\mu,\nu)} \int_{\mathcal{Y} \times \mathcal{Y}} c(y,y') \, \mathrm{d}\gamma(y,y').$$

It can be shown that there exists a minimizer $\gamma^* \in \Gamma(\mu, \nu)$ for such a problem which could be determined by means of gradient descent algorithms.

Example

For $c = (\varrho_{\mathcal{Y}})^p$, \mathcal{K} coincides with the *p*-power of the Wasserstein distance: $\mathcal{K} = \mathcal{W}_p^p$.

Marco Tarsia (Insubria - DiSAT)

$$\mathcal{M}(\mu,\nu) \doteq \inf_{T \in \mathsf{T}(\mu,\nu)} \int_{\mathcal{V}} c(y,T(y)) \, \mu(\mathrm{d} y).$$

Example

Assume dy = 1 and $\mathcal{Y} = \mathbb{R}$ with ϱy equal to the Euclidean metric. If there exists a function $\varphi \colon \mathbb{R} \to \mathbb{R}$ which is convex and such that $c(y, y') = \varphi(y - y')$, $y, y' \in \mathbb{R}$, then, for $\mu, \nu \in \mathscr{P}_p(\mathbb{R})$ with μ not atomic, the function $T^* := F_{\nu}^{-1} \circ F_{\mu} \in \mathsf{T}(\mu, \nu)$ is an optimal transport map w.r.t. the Monge's formulation (the unique if φ is strictly convex) and the following identity holds:

$$\mathcal{M}(\mu,\nu) \equiv \int_{\mathbb{R}} \varphi(y - T^*(y)) \, \mu(\mathrm{d}y) = \int_0^1 \varphi(F_{\mu}^{-1}(t) - F_{\nu}^{-1}(t)) \, \mathrm{d}t.$$

Radon Symptotic. For any $\mu, \nu \in \mathscr{P}_{p}(\mathcal{Y}), \ \varrho_{\mathcal{R}}(\mu, \nu) \doteq \sup_{h \in C^{0}(\mathcal{Y}, I-1, 1) \mid \mathcal{Y}} h(y) \ (\mu - \nu)(dy) \ defines a$

metric on $\mathscr{P}_{\rho}(\mathcal{Y})$ whose notion of convergence corresponds with the total variation of

Marco Tarsia (Insubria - DiSAT)

$$\mathcal{M}(\mu,\nu) \doteq \inf_{T \in \mathsf{T}(\mu,\nu)} \int_{\mathcal{Y}} c(y,T(y)) \mu(\mathsf{d} y).$$

Example

Assume $d_{\mathcal{Y}} = 1$ and $\mathcal{Y} = \mathbb{R}$ with $\varrho_{\mathcal{Y}}$ equal to the Euclidean metric. If there exists a function $\varphi \colon \mathbb{R} \to \mathbb{R}$ which is convex and such that $c(y, y') = \varphi(y - y')$, $y, y' \in \mathbb{R}$, then, for $\mu, \nu \in \mathscr{P}_{p}(\mathbb{R})$ with μ not atomic, the function $T^* := F_{\nu}^{-1} \circ F_{\mu} \in \mathsf{T}(\mu, \nu)$ is an optimal transport map w.r.t. the Monge's formulation (the unique if φ is strictly convex) and the following identity holds:

$$\mathcal{M}(\mu,\nu) \equiv \int_{\mathbb{R}} \varphi(y - T^*(y)) \, \mu(\mathrm{d}y) = \int_0^1 \varphi(F_{\mu}^{-1}(t) - F_{\nu}^{-1}(t)) \, \mathrm{d}t.$$

Radon symmetric. For any $\mu, \nu \in \mathscr{P}_{p}(\mathcal{Y}), \ \varrho_{\mathcal{R}}(\mu, \nu) \doteq \sup_{h \in C^{\alpha}(Y, I-1, 1)} \int_{\mathcal{Y}} h(y) (\mu - \nu)(dy)$ defines a

metric on $\mathscr{P}_{0}(\mathcal{Y})$ whose notion of convergence corresponds with the total variation of

$$\mathcal{M}(\mu, \nu) \doteq \inf_{\mathcal{T} \in \mathsf{T}(\mu, \nu)} \int_{\mathcal{Y}} c(y, \mathcal{T}(y)) \, \mu(\mathsf{d} y).$$

Example

Assume $d_{\mathcal{Y}} = 1$ and $\mathcal{Y} = \mathbb{R}$ with $\varrho_{\mathcal{Y}}$ equal to the Euclidean metric. If there exists a function $\varphi \colon \mathbb{R} \to \mathbb{R}$ which is convex and such that $c(y, y') = \varphi(y - y'), y, y' \in \mathbb{R}$, then, for $\mu, \nu \in \mathscr{P}_{p}(\mathbb{R})$ with μ not atomic, the function $\mathcal{T}^* := F_{\nu}^{-1} \circ F_{\mu} \in \mathsf{T}(\mu, \nu)$ is an optimal transport map w.r.t. the Monge's formulation (the unique if φ is strictly convex) and the following identity holds:

$$\mathcal{M}(\mu,\nu) \equiv \int_{\mathbb{R}} \varphi(y - T^*(y)) \, \mu(\mathrm{d}y) = \int_0^1 \varphi(F_{\mu}^{-1}(t) - F_{\nu}^{-1}(t)) \, \mathrm{d}t.$$

Radon's metric. For any $\mu, \nu \in \mathscr{P}_{p}(\mathcal{Y}), \ \varrho_{\mathcal{R}}(\mu, \nu) \doteq \sup_{h \in C^{0}(\mathcal{Y}, [-1, 1])} \int_{\mathcal{Y}} h(y) (\mu - \nu)(dy)$ defines a metric on $\mathscr{P}_{n}(\mathcal{Y})$ whose notion of convergence corresponds with the total variation one.

costnet

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

< 日 > < 同 >

$$\mathcal{M}(\mu,
u) \doteq \inf_{\mathcal{T} \in \mathsf{T}(\mu,
u)} \int_{\mathcal{Y}} c(y, \mathcal{T}(y)) \, \mu(\mathsf{d} y).$$

Example

Assume $d_{\mathcal{Y}} = 1$ and $\mathcal{Y} = \mathbb{R}$ with $\varrho_{\mathcal{Y}}$ equal to the Euclidean metric. If there exists a function $\varphi \colon \mathbb{R} \to \mathbb{R}$ which is convex and such that $c(y, y') = \varphi(y - y')$, $y, y' \in \mathbb{R}$, then, for $\mu, \nu \in \mathscr{P}_{p}(\mathbb{R})$ with μ not atomic, the function $T^* := F_{\nu}^{-1} \circ F_{\mu} \in \mathsf{T}(\mu, \nu)$ is an optimal transport map w.r.t. the Monge's formulation (the unique if φ is strictly convex) and the following identity holds:

$$\mathcal{M}(\mu,\nu) \equiv \int_{\mathbb{R}} \varphi(y - T^*(y)) \, \mu(\mathrm{d}y) = \int_0^1 \varphi(F_{\mu}^{-1}(t) - F_{\nu}^{-1}(t)) \, \mathrm{d}t.$$

Radon's metric. For any $\mu, \nu \in \mathscr{P}_{p}(\mathcal{Y}), \ \varrho_{\mathcal{R}}(\mu, \nu) \doteq \sup_{h \in C^{0}(\mathcal{Y}, [-1, 1])} \int_{\mathcal{Y}} h(y) (\mu - \nu)(dy)$ defines a

metric on $\mathscr{P}_{\rho}(\mathcal{Y})$ whose notion of convergence corresponds with the total variation one.

costnet

Marco Tarsia (Insubria - DiSAT)

<<p>Image: 1

$$\mathcal{M}(\mu,
u) \doteq \inf_{\mathcal{T} \in \mathsf{T}(\mu,
u)} \int_{\mathcal{Y}} c(y, \mathcal{T}(y)) \, \mu(\mathsf{d} y).$$

Example

Assume $d_{\mathcal{Y}} = 1$ and $\mathcal{Y} = \mathbb{R}$ with $\varrho_{\mathcal{Y}}$ equal to the Euclidean metric. If there exists a function $\varphi \colon \mathbb{R} \to \mathbb{R}$ which is convex and such that $c(y, y') = \varphi(y - y')$, $y, y' \in \mathbb{R}$, then, for $\mu, \nu \in \mathscr{P}_{p}(\mathbb{R})$ with μ not atomic, the function $T^* := F_{\nu}^{-1} \circ F_{\mu} \in \mathsf{T}(\mu, \nu)$ is an optimal transport map w.r.t. the Monge's formulation (the unique if φ is strictly convex) and the following identity holds:

$$\mathcal{M}(\mu,\nu) \equiv \int_{\mathbb{R}} \varphi(y - T^*(y)) \, \mu(\mathrm{d}y) = \int_0^1 \varphi(F_{\mu}^{-1}(t) - F_{\nu}^{-1}(t)) \, \mathrm{d}t.$$

Radon's metric. For any $\mu, \nu \in \mathscr{P}_{p}(\mathcal{Y}), \ \varrho_{\mathcal{R}}(\mu, \nu) \doteq \sup_{h \in C^{\mathbf{0}}(\mathcal{Y}, [-1, 1])} \int_{\mathcal{Y}} h(y) (\mu - \nu) (dy)$ defines a

metric on $\mathscr{P}_{p}(\mathcal{Y})$ whose notion of convergence corresponds with the total variation one.

costnet

Marco Tarsia (Insubria - DiSAT) Math

(ロ) (同) (ヨ) (ヨ)

$\forall n \in \mathbb{N}^*$, we write $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$ meaning to vary of $y^{1:n}(\omega) \equiv y^{1:n}$ in \mathcal{Y}^n for P-a.a. $\omega \in \Omega$.

Deviation measure of distributions: $\forall n \in \mathbb{N}^*$, $\forall y^{1:n} \in \mathcal{Y}^n$, $\forall \vartheta \in \mathcal{H}$, $\forall z^{1:n} \in \mathcal{Y}^n_{\theta}$, we univocally associate an element in $\mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_p(\mathcal{Y})$, $\mu_n \equiv \mu_{y^{1:n}}$ to $y^{1:n}$ and $\mu_{\vartheta,n} \equiv \mu_{\vartheta,z^{1:n}}$ to $z^{1:n}$, and we select a pseudo-distance \mathcal{T} on $\mathscr{P}(\mathcal{Y})$, possibly on $\mathscr{P}_p(\mathcal{Y})$.

Example

 $\mu_n = \widehat{\mu}_n \coloneqq n^{-1} \sum_{k=1}^n \delta_{y^k} \text{ and } \mu_{\vartheta,n} = \widehat{\mu}_{\vartheta,n} \coloneqq n^{-1} \sum_{k=1}^n \delta_{z^k} \text{ (empirical distributions)}.$

Axiom [B0]

 $\forall n \in \mathbb{N}^*$ and $\forall \vartheta \in \mathcal{H}$, the three following conditions hold.

 $= \mathcal{Y}_{0}^{*} \in \mathcal{B}(\mathcal{Y}^{*}).$

 $\mathbb{Y} \ y^{1,n} \in \mathcal{Y}'$, the function $x^{1,n} \mapsto \mathcal{T}(\mu_n, \mu_{d,n})$ belongs to $\mathcal{B}(\mathcal{Y}'_n, \mathbb{R}_n)$

 $\mathbb{V}[y^{2:n} \in \mathcal{Y}^n \text{ and } \forall e \in]0, e_0[.$

 $|\{z^{1,0} \in \mathcal{N}_{0}^{n} | | | z^{1,0} \in \mathcal{N}_{0}^{n} | | T(\mu_{n}, \mu_{n}, n) \le c \}|$

3 of bo holds if, $\forall n \in \mathbb{N}^*$, $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$, $\widetilde{\forall} v \in \mathcal{H}$ and $\forall z^{1:n} \in \mathcal{Y}^n_0$

 $\forall n \in \mathbb{N}^*$, we write $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$ meaning to vary of $y^{1:n}(\omega) \equiv y^{1:n}$ in \mathcal{Y}^n for P-a.a. $\omega \in \Omega$.

Deviation measure of distributions: $\forall n \in \mathbb{N}^*$, $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$, $\widetilde{\forall} \vartheta \in \mathcal{H}$, $\forall z^{1:n} \in \mathcal{Y}^n_{\vartheta}$, we univocally associate an element in $\mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_p(\mathcal{Y})$, $\mu_n \equiv \mu_{y^{1:n}}$ to $y^{1:n}$ and $\mu_{\vartheta,n} \equiv \mu_{\vartheta,z^{1:n}}$ to $z^{1:n}$, and we select a pseudo-distance \mathcal{T} on $\mathscr{P}(\mathcal{Y})$, possibly on $\mathscr{P}_p(\mathcal{Y})$.

Example

 $\mu_n = \widehat{\mu}_n \coloneqq n^{-1} \sum_{k=1}^n \delta_{y^k} \text{ and } \mu_{\vartheta,n} = \widehat{\mu}_{\vartheta,n} \coloneqq n^{-1} \sum_{k=1}^n \delta_{z^k} \text{ (empirical distributions)}.$

Axiom [B0]

 $\forall n \in \mathbb{N}^*$ and $\forall \vartheta \in \mathcal{H}$, the three following conditions hold.

 $= D_{ij}^{\alpha} \in \mathcal{B}(\mathcal{D}^{\alpha}).$

[0] $(X, y^{1,0} \in \mathbb{R}^n)$, the function $x^{1,0} \mapsto T(\mu_{n}, \mu_{n}, x)$ belongs to $\mathcal{B}(\mathbb{R}^n, \mathbb{R}_n)$. [0] $(\overline{X}, y^{1,0} \in \mathbb{R}^n)$ and $X \in [0, \infty)$.

 $||u_{n}^{0}|| \ge |u_{n}^{0}|| \le |u_{n}^{0}|| \le ||u_{n}^{0}|| \le ||u_{n}^{0}||$

3 of bo holds if, $\forall n \in \mathbb{N}^*$, $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$, $\widetilde{\forall} v \in \mathcal{H}$ and $\forall z^{1:n} \in \mathcal{Y}^n_n$,

 $\forall n \in \mathbb{N}^*$, we write $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$ meaning to vary of $y^{1:n}(\omega) \equiv y^{1:n}$ in \mathcal{Y}^n for P-a.a. $\omega \in \Omega$.

Deviation measure of distributions: $\forall n \in \mathbb{N}^*$, $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$, $\widetilde{\forall} \vartheta \in \mathcal{H}$, $\forall z^{1:n} \in \mathcal{Y}^n_{\vartheta}$, we univocally associate an element in $\mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_p(\mathcal{Y})$, $\mu_n \equiv \mu_{y^{1:n}}$ to $y^{1:n}$ and $\mu_{\vartheta,n} \equiv \mu_{\vartheta,z^{1:n}}$ to $z^{1:n}$, and we select a pseudo-distance \mathcal{T} on $\mathscr{P}(\mathcal{Y})$, possibly on $\mathscr{P}_p(\mathcal{Y})$.

Example

 $\mu_n = \widehat{\mu}_n := n^{-1} \sum_{k=1}^n \delta_{y^k} \text{ and } \mu_{\vartheta,n} = \widehat{\mu}_{\vartheta,n} := n^{-1} \sum_{k=1}^n \delta_{z^k} \text{ (empirical distributions)}.$

Axiom [B0]

 $\forall n \in \mathbb{N}^* \text{ and } \forall \vartheta \in \mathcal{H}$, the three following conditions hold.

 $\boxed{[]} \forall y^{1n} \in \mathcal{Y}_{c}, \text{ the function } z^{1n} \mapsto \mathcal{T}(\mu_{n}, \mu_{d,n}) \text{ belongs to } \mathscr{B}(\mathcal{Y}_{d}^{n}, \mathbb{R}_{+})$

 $\forall y^{\pm in} \in \mathcal{Y}^n$ and $\forall z \in [0, z_0]$.

 $|\mathcal{J}_{i}| \ge \mathcal{J}_{i}^{c} \{ |z^{1,a} \in \mathcal{J}_{i}^{a} | T(\mu_{i}, \mu_{i}, a) \le c \} \}$

3 of B0 holds if, $\forall n \in \mathbb{N}^*$, $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$, $\widetilde{\forall} v \in \mathcal{H}$ and $\forall z^{1:n} \in \mathcal{Y}^n_{n}$,

 $\forall n \in \mathbb{N}^*$, we write $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$ meaning to vary of $y^{1:n}(\omega) \equiv y^{1:n}$ in \mathcal{Y}^n for P-a.a. $\omega \in \Omega$.

Deviation measure of distributions: $\forall n \in \mathbb{N}^*$, $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$, $\widetilde{\forall} \vartheta \in \mathcal{H}$, $\forall z^{1:n} \in \mathcal{Y}^n_{\vartheta}$, we univocally associate an element in $\mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_p(\mathcal{Y})$, $\mu_n \equiv \mu_{y^{1:n}}$ to $y^{1:n}$ and $\mu_{\vartheta,n} \equiv \mu_{\vartheta,z^{1:n}}$ to $z^{1:n}$, and we select a pseudo-distance \mathcal{T} on $\mathscr{P}(\mathcal{Y})$, possibly on $\mathscr{P}_p(\mathcal{Y})$.

Example

 $\mu_n = \widehat{\mu}_n := n^{-1} \sum_{k=1}^n \delta_{y^k} \text{ and } \mu_{\vartheta,n} = \widehat{\mu}_{\vartheta,n} := n^{-1} \sum_{k=1}^n \delta_{z^k} \text{ (empirical distributions)}.$

Axiom [B0]

 $\forall n \in \mathbb{N}^* \text{ and } \widetilde{\forall} \vartheta \in \mathcal{H}$, the three following conditions hold.

■ $\forall y^{1:n} \in \mathcal{Y}^{n}$, the function $z^{1:n} \mapsto \mathcal{T}(\mu_n, \mu_{\partial, n})$ belongs to $\mathscr{B}(\mathcal{Y}^{n}_{\partial}, \mathbb{R}_+)$. ■ $\forall y^{1:n} \in \mathcal{Y}^{n}$ and $\forall z \in [0, z_0]$.

 $|\{z^{1,n} \in \mathcal{Y}_{0}^{n} | | \{z^{1,n} \in \mathcal{Y}_{0}^{n} | | T(\mu_{n}, \mu_{n}, n) \leq \epsilon \}|\}$

 $\forall n \in \mathbb{N}^*$, we write $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$ meaning to vary of $y^{1:n}(\omega) \equiv y^{1:n}$ in \mathcal{Y}^n for P-a.a. $\omega \in \Omega$.

Deviation measure of distributions: $\forall n \in \mathbb{N}^*$, $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$, $\widetilde{\forall} \vartheta \in \mathcal{H}$, $\forall z^{1:n} \in \mathcal{Y}^n_{\vartheta}$, we univocally associate an element in $\mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_p(\mathcal{Y})$, $\mu_n \equiv \mu_{y^{1:n}}$ to $y^{1:n}$ and $\mu_{\vartheta,n} \equiv \mu_{\vartheta,z^{1:n}}$ to $z^{1:n}$, and we select a pseudo-distance \mathcal{T} on $\mathscr{P}(\mathcal{Y})$, possibly on $\mathscr{P}_p(\mathcal{Y})$.

Example

 $\mu_n = \widehat{\mu}_n := n^{-1} \sum_{k=1}^n \delta_{y^k} \text{ and } \mu_{\vartheta,n} = \widehat{\mu}_{\vartheta,n} := n^{-1} \sum_{k=1}^n \delta_{z^k} \text{ (empirical distributions)}.$

Axiom [B0]

∀ n ∈ N* and ∀ ϑ ∈ H, the three following conditions hold.
1 𝔅ⁿ_ϑ ∈ 𝔅(𝔅ⁿ).
2 ∀ 𝗴^{1,n} ∈ 𝔅ⁿ, the function ż^{1,n} ↦ 𝒯(μ_n, μ_{ϑ,n}) belongs to 𝔅(𝔅ⁿ_ϑ, ℝ₊
3 ∀ 𝗴^{1,n} ∈ 𝔅ⁿ and ∀ ε ∈]0, ε₀[,

 $\mu_{\vartheta}^{n}[D_{\varepsilon}^{n}] \geq \mu_{\vartheta}^{n}\left[\left\{ z^{1:n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}(\mu_{n}, \mu_{\vartheta, n}) \leq \varepsilon \right\}\right].$

3 of **b**0 holds if, $\forall n \in \mathbb{N}^*$, $\forall y^{1:n} \in \mathcal{Y}^n$, $\forall \vartheta \in \mathcal{H}$ and $\forall z^{1:n} \in \mathcal{Y}^n_{\theta}$

Marco Tarsia (Insubria - DiSAT)

 $\forall n \in \mathbb{N}^*$, we write $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$ meaning to vary of $y^{1:n}(\omega) \equiv y^{1:n}$ in \mathcal{Y}^n for P-a.a. $\omega \in \Omega$.

Deviation measure of distributions: $\forall n \in \mathbb{N}^*$, $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$, $\widetilde{\forall} \vartheta \in \mathcal{H}$, $\forall z^{1:n} \in \mathcal{Y}^n_{\vartheta}$, we univocally associate an element in $\mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_p(\mathcal{Y})$, $\mu_n \equiv \mu_{y^{1:n}}$ to $y^{1:n}$ and $\mu_{\vartheta,n} \equiv \mu_{\vartheta,z^{1:n}}$ to $z^{1:n}$, and we select a pseudo-distance \mathcal{T} on $\mathscr{P}(\mathcal{Y})$, possibly on $\mathscr{P}_p(\mathcal{Y})$.

Example

 $\mu_n = \widehat{\mu}_n := n^{-1} \sum_{k=1}^n \delta_{y^k} \text{ and } \mu_{\vartheta,n} = \widehat{\mu}_{\vartheta,n} := n^{-1} \sum_{k=1}^n \delta_{z^k} \text{ (empirical distributions)}.$

Axiom [B0]

∀ n ∈ N* and ∀ ϑ ∈ H, the three following conditions hold.
Yⁿ_ϑ ∈ B(Yⁿ).
Y y^{1:n} ∈ Yⁿ, the function z^{1:n} ↦ T(µ_n, µ_{ϑ,n}) belongs to 𝔅(Yⁿ_ϑ, ℝ₊).
∀ y^{1:n} ∈ Yⁿ and ∀ ε ∈]0, ε₀[,

 $\mu_{\vartheta}^{n}[D_{\varepsilon}^{n}] \geq \mu_{\vartheta}^{n} \left[\left\{ z^{1:n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}(\mu_{n}, \mu_{\vartheta, n}) \leq \varepsilon \right\} \right].$

3 of by holds if, $\forall n \in \mathbb{N}^*$, $\forall y^{1:n} \in \mathcal{Y}^n$, $\forall v \in \mathcal{H}$ and $\forall z^{1:n} \in \mathcal{Y}^n_{\sigma}$

Marco Tarsia (Insubria - DiSAT)

 $\forall n \in \mathbb{N}^*$, we write $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$ meaning to vary of $y^{1:n}(\omega) \equiv y^{1:n}$ in \mathcal{Y}^n for P-a.a. $\omega \in \Omega$.

Deviation measure of distributions: $\forall n \in \mathbb{N}^*$, $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$, $\widetilde{\forall} \vartheta \in \mathcal{H}$, $\forall z^{1:n} \in \mathcal{Y}^n_{\vartheta}$, we univocally associate an element in $\mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_p(\mathcal{Y})$, $\mu_n \equiv \mu_{y^{1:n}}$ to $y^{1:n}$ and $\mu_{\vartheta,n} \equiv \mu_{\vartheta,z^{1:n}}$ to $z^{1:n}$, and we select a pseudo-distance \mathcal{T} on $\mathscr{P}(\mathcal{Y})$, possibly on $\mathscr{P}_p(\mathcal{Y})$.

Example

 $\mu_n = \widehat{\mu}_n \coloneqq n^{-1} \sum_{k=1}^n \delta_{y^k} \text{ and } \mu_{\vartheta,n} = \widehat{\mu}_{\vartheta,n} \coloneqq n^{-1} \sum_{k=1}^n \delta_{z^k} \text{ (empirical distributions)}.$

Axiom [B0]

$$\forall n \in \mathbb{N}^* \text{ and } \widetilde{\forall} \vartheta \in \mathcal{H}, \text{ the three following conditions hold.}$$

$$1 \quad \mathcal{Y}^n_\vartheta \in \mathcal{B}(\mathcal{Y}^n).$$

$$2 \quad \widetilde{\forall} y^{1:n} \in \mathcal{Y}^n, \text{ the function } z^{1:n} \mapsto \mathcal{T}(\mu_n, \mu_{\vartheta, n}) \text{ belongs to } \mathscr{B}(\mathcal{Y}^n_\vartheta, \mathbb{R}_+)$$

$$3 \quad \widetilde{\forall} y^{1:n} \in \mathcal{Y}^n \text{ and } \forall \varepsilon \in]0, \varepsilon_0[,$$

$$\mu_{\vartheta}^{n}[D_{\varepsilon}^{n}] \geq \mu_{\vartheta}^{n} \big[\big\{ z^{1:n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}(\mu_{n}, \mu_{\vartheta, n}) \leq \varepsilon \big\} \big].$$

3 of B0 holds if, $\forall n \in \mathbb{N}^*$, $\forall y^{1:n} \in \mathcal{Y}^n$, $\forall \vartheta \in \mathcal{H}$ and $\forall z^{1:n} \in \mathcal{Y}^n_{\vartheta}$

 $\mathcal{D}(y^{1:n}, z^{1:n}) \leq \mathcal{T}(\mu_n, \mu_{\vartheta, n}).$

Marco Tarsia (Insubria - DiSAT)

 $\forall n \in \mathbb{N}^*$, we write $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$ meaning to vary of $y^{1:n}(\omega) \equiv y^{1:n}$ in \mathcal{Y}^n for P-a.a. $\omega \in \Omega$.

Deviation measure of distributions: $\forall n \in \mathbb{N}^*$, $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$, $\widetilde{\forall} \vartheta \in \mathcal{H}$, $\forall z^{1:n} \in \mathcal{Y}^n_{\vartheta}$, we univocally associate an element in $\mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_p(\mathcal{Y})$, $\mu_n \equiv \mu_{y^{1:n}}$ to $y^{1:n}$ and $\mu_{\vartheta,n} \equiv \mu_{\vartheta,z^{1:n}}$ to $z^{1:n}$, and we select a pseudo-distance \mathcal{T} on $\mathscr{P}(\mathcal{Y})$, possibly on $\mathscr{P}_p(\mathcal{Y})$.

Example

 $\mu_n = \widehat{\mu}_n \coloneqq n^{-1} \sum_{k=1}^n \delta_{y^k} \text{ and } \mu_{\vartheta,n} = \widehat{\mu}_{\vartheta,n} \coloneqq n^{-1} \sum_{k=1}^n \delta_{z^k} \text{ (empirical distributions)}.$

Axiom [B0]

$$\forall n \in \mathbb{N}^* \text{ and } \widetilde{\forall} \vartheta \in \mathcal{H}, \text{ the three following conditions hold.}$$

$$1 \quad \mathcal{Y}^n_\vartheta \in \mathcal{B}(\mathcal{Y}^n).$$

$$2 \quad \widetilde{\forall} y^{1:n} \in \mathcal{Y}^n, \text{ the function } z^{1:n} \mapsto \mathcal{T}(\mu_n, \mu_{\vartheta, n}) \text{ belongs to } \mathscr{B}(\mathcal{Y}^n_\vartheta, \mathbb{R}_+)$$

$$3 \quad \widetilde{\forall} y^{1:n} \in \mathcal{Y}^n \text{ and } \forall \varepsilon \in]0, \varepsilon_0[,$$

$$\mu_{\vartheta}^{n}[D_{\varepsilon}^{n}] \geq \mu_{\vartheta}^{n} \big[\big\{ z^{1:n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}(\mu_{n}, \mu_{\vartheta, n}) \leq \varepsilon \big\} \big].$$

3 of B0 holds if, $\forall n \in \mathbb{N}^*$, $\forall y^{1:n} \in \mathcal{Y}^n$, $\forall \vartheta \in \mathcal{H}$ and $\forall z^{1:n} \in \mathcal{Y}^n_{\vartheta}$

 $\mathcal{D}(y^{1:n}, z^{1:n}) \leq \mathcal{T}(\mu_n, \mu_{\vartheta, n}).$

Marco Tarsia (Insubria - DiSAT)

 $\forall n \in \mathbb{N}^*$, we write $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$ meaning to vary of $y^{1:n}(\omega) \equiv y^{1:n}$ in \mathcal{Y}^n for P-a.a. $\omega \in \Omega$.

Deviation measure of distributions: $\forall n \in \mathbb{N}^*$, $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$, $\widetilde{\forall} \vartheta \in \mathcal{H}$, $\forall z^{1:n} \in \mathcal{Y}^n_{\vartheta}$, we univocally associate an element in $\mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_p(\mathcal{Y})$, $\mu_n \equiv \mu_{y^{1:n}}$ to $y^{1:n}$ and $\mu_{\vartheta,n} \equiv \mu_{\vartheta,z^{1:n}}$ to $z^{1:n}$, and we select a pseudo-distance \mathcal{T} on $\mathscr{P}(\mathcal{Y})$, possibly on $\mathscr{P}_p(\mathcal{Y})$.

Example

$$\mu_n = \widehat{\mu}_n := n^{-1} \sum_{k=1}^n \delta_{y^k} \text{ and } \mu_{\vartheta,n} = \widehat{\mu}_{\vartheta,n} := n^{-1} \sum_{k=1}^n \delta_{z^k} \text{ (empirical distributions)}.$$

Axiom [B0]

$$\forall n \in \mathbb{N}^* \text{ and } \widetilde{\forall} \vartheta \in \mathcal{H}, \text{ the three following conditions hold.}$$

$$\mathbf{\mathcal{Y}}_{\vartheta}^n \in \mathcal{B}(\mathcal{Y}^n).$$

$$\mathbf{\widetilde{\forall}} \ y^{1:n} \in \mathcal{Y}^n, \text{ the function } z^{1:n} \mapsto \mathcal{T}(\mu_n, \mu_{\vartheta, n}) \text{ belongs to } \mathscr{B}(\mathcal{Y}_{\vartheta}^n, \mathbb{R}_+).$$

$$\mathbf{\widetilde{\forall}} \ y^{1:n} \in \mathcal{Y}^n \text{ and } \forall \varepsilon \in]0, \varepsilon_0[,$$

$$\mu_{\vartheta}^{n}[D_{\varepsilon}^{n}] \geq \mu_{\vartheta}^{n} \big[\big\{ z^{1:n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}(\mu_{n}, \mu_{\vartheta, n}) \leq \varepsilon \big\} \big].$$

3 of B0 holds if, $\forall n \in \mathbb{N}^*$, $\widetilde{\forall} y^{1:n} \in \mathcal{Y}^n$, $\widetilde{\forall} \vartheta \in \mathcal{H}$ and $\forall z^{1:n} \in \mathcal{Y}^n_{\mathfrak{s}^1}$,

 $\mathcal{D}(y^{1:n}, z^{1:n}) \leq \mathcal{T}(\mu_n, \mu_{\vartheta, n}).$

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.

Marco Tarsia (Insubria - DiSAT) Mathematical

Mathematical Foundation of ABC

24 September 2020

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.

1 For any $n \in \mathbb{N}^*$, $\omega \mapsto \mathcal{T}(\mu_n, \mu_\star)$ is \mathcal{A} -measurable as a function from Ω to \mathbb{R}_+ .

 $\mathcal{T}(\mu_n,\mu_\star) o \mathsf{0}, \ \mathsf{P} ext{-a.s., as } n o \infty.$

Axiom [B2] (under B1)

 $\forall \ \vartheta \in \mathcal{H}$, there exists unique $\mu_{\vartheta} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.

 $[] \forall n \in \mathbb{N} \text{ and } \forall \theta \in \mathcal{H}, \text{ the function } z^{1n} \mapsto \mathcal{T}(\mu_{\theta,n},\mu_{\theta}) \text{ belongs to } \mathcal{B}(\mathcal{Y}_{0}^{n},\mathbb{R}_{0}).$

There exists $r \in [0, 1]$ such that, $\tilde{\forall} \not a \in \mathcal{H}$ and $\forall e > 0$,

 $\limsup_{v \in \mathcal{V}_{v}} \mu_{\theta}^{s} \big[\big\{ x^{1,v} \in \mathcal{Y}_{\theta}^{s} \mid \mathcal{T} \big\{ \mu_{\theta,v}, \mu_{\theta} \big\} > \varepsilon \big\} \big] \leq \tau.$

There exist $\sigma \in [0, \tau]$ and $c_1 > 0$ such that, $\forall \ \sigma \in \mathcal{H}$ and $\forall \ e \in [0, \epsilon_1]$.

 $m\inf_{\sigma}\mu_{\sigma}^{*}\left[\left\{\left.z^{1,\sigma}\in\mathcal{Y}_{\sigma}^{*}\right|\mathcal{T}\left(\mu_{\sigma,\sigma},\mu_{\sigma}\right)>\varepsilon\right\}\right]\geq\sigma.$

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020

< 日 > < 同 >

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.

- **1** For any $n \in \mathbb{N}^*$, $\omega \mapsto \mathcal{T}(\mu_n, \mu_*)$ is \mathcal{A} -measurable as a function from Ω to \mathbb{R}_+ .
- 2 $\mathcal{T}(\mu_n, \mu_\star) \rightarrow 0$, **P**-a.s., as $n \rightarrow \infty$.

Axiom [B2] (under B1)

 $\forall \ \vartheta \in \mathcal{H}$, there exists unique $\mu_{\vartheta} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{\rho}(\mathcal{Y})$, such that the following occurs.

 $\mathbb{W} \to \mathbb{W}^*$ and $\mathbb{V} \in \mathcal{H}$, the function $z^{kn} \mapsto \mathcal{T}(\mu_{d,n}, \mu_d)$ belongs to $\mathscr{B}(\mathcal{Y}_{0}, \mathbb{R}_{+})$.

There exists $x \in [0, 1]$ such that, $\tilde{\forall} \not a \in \mathcal{H}$ and $\forall x > 0$.

 $\limsup_{n}\mu_0^s\left[\left\{|z^{1,n}\in\mathcal{Y}_0^s\mid \mathcal{T}(\mu_{2,n},\mu_2)>\varepsilon\right\}\right]\leq \tau.$

There exist $\sigma \in [0, \tau]$ and $c_1 > 0$ such that, $\forall d \in \mathcal{X}$ and $\forall e \in [0, c_1]$.

 $\min_{i \in \mathcal{M}} \mu_{\theta}^{s}[\{x^{1,s} \in \mathcal{Y}_{\theta}^{s} \mid \mathcal{T}(\mu_{\theta_{i},n}, \mu_{\theta}) \geq \epsilon\}] \geq \alpha$.

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020

(日)

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.

- **1** For any $n \in \mathbb{N}^*$, $\omega \mapsto \mathcal{T}(\mu_n, \mu_*)$ is \mathcal{A} -measurable as a function from Ω to \mathbb{R}_+ .
- 2 $\mathcal{T}(\mu_n, \mu_\star) \rightarrow 0$, **P**-a.s., as $n \rightarrow \infty$.

Axiom [B2] (under B1)

 $\forall \vartheta \in \mathcal{H}$, there exists unique $\mu_{\vartheta} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{\rho}(\mathcal{Y})$, such that the following occurs. The function $\vartheta \mapsto \mathcal{T}(\mu_{\vartheta}, \mu_{*})$ belongs to $\mathscr{P}(\mathcal{H}, \mathbb{R}_{*})$.

 \mathbb{Z} V $n \in \mathbb{N}^*$ and \mathbb{Y} $\theta \in \mathcal{H}_{\epsilon}$ the function $z^{1n} \mapsto \mathcal{T}(\mu_{\theta,n},\mu_{\theta})$ belongs to $\mathscr{G}(\mathbb{Y}_{\theta}^*,\mathbb{R}_{\tau})$.

There exists $r \in [0, 1]$ such that, $\forall d \in \mathcal{H}$ and $\forall e > 0$,

 $\lim\sup_{p \in \mathcal{J}_{p}^{k}} \mu_{p}^{k} \left[\left\{ \left| z^{1,p} \in \mathcal{J}_{p}^{k} \right| \mid \mathcal{T}(\mu_{\sigma}, \mu_{\sigma}) > \alpha \right\} \right] \leq \tau_{\tau} \cdot \left[\left\{ \left| z^{1,p} \in \mathcal{J}_{p}^{k} \right| \mid \mathcal{T}(\mu_{\sigma}, \mu_{\sigma}) > \alpha \right\} \right] \leq \tau_{\tau} \cdot \left[\left\{ \left| z^{1,p} \in \mathcal{J}_{p}^{k} \right| \mid z^{1,p} \in \mathcal{J}_{p}^{k} \right\} \right] \leq \tau_{\tau} \cdot \left[\left| z^{1,p} \in \mathcal{J}_{p}^{k} \right| \mid z^{1,p} \in \mathcal{J}_{p}^{k} \right]$

There exist $v \in [0, r]$ and $e_i > 0$ such that, $\forall v \in \mathcal{H}$ and $\forall e \in [0, e_i]$,

 $\min_{a} \mu_{\theta}^{s}[\{x^{1,a} \in \mathcal{Y}_{\theta}^{s} \mid \mathcal{T}(\mu_{\theta_{1}a_{1}}, \mu_{\theta}) > \varepsilon\}] \geq \sigma.$

< 日 > < 円 >

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.

- **1** For any $n \in \mathbb{N}^*$, $\omega \mapsto \mathcal{T}(\mu_n, \mu_*)$ is \mathcal{A} -measurable as a function from Ω to \mathbb{R}_+ .
- **2** $\mathcal{T}(\mu_n, \mu_\star) \to 0$, **P**-a.s., as $n \to \infty$.

Axiom [B2] (under B1)

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}$, there exists unique $\mu_{\vartheta} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_p(\mathcal{Y})$, such that the following occurs.

 $\mathcal{T} \in \mathbb{N}^*$ and $\forall \ \theta \in \mathcal{H}$, the function $z^{\perp n} \mapsto \mathcal{T}(\mu_{\theta,n}, \mu_{\theta})$ belongs to $\mathscr{B}(\mathcal{Y}^n_{\theta}, \mathbb{R}_+)$

 $\operatorname{msup}_{\sigma} \mu_{\theta}^{*}[\{z^{1,\sigma} \in \mathcal{Y}_{0}^{\sigma} | T(\mu_{\sigma}, \mu_{\theta}) \geq \varepsilon\}] \leq \tau \tau$

There exist $\sigma \in [0, \tau]$ and $e_1 > 0$ such that, $\forall \phi \in \mathcal{H}$ and $\forall e \in [0, e_1]$

 $= \sigma \cdot \left[\left\{ z^{1, \rho} \in \mathcal{Y}_{0}^{\sigma} \mid \mathcal{T}(\mu_{\sigma_{1}, \rho_{1}}, \mu_{\sigma}) > \varepsilon \right\} \right] \geq \sigma \cdot$

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020

< A >

10/14

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.

- **1** For any $n \in \mathbb{N}^*$, $\omega \mapsto \mathcal{T}(\mu_n, \mu_*)$ is \mathcal{A} -measurable as a function from Ω to \mathbb{R}_+ .
- 2 $\mathcal{T}(\mu_n, \mu_\star) \rightarrow 0$, **P**-a.s., as $n \rightarrow \infty$.

Axiom [B2] (under B1)

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}$, there exists unique $\mu_{\vartheta} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs. **1** The function $\vartheta \mapsto \mathcal{T}(\mu_{\vartheta}, \mu_{\star})$ belongs to $\mathscr{B}(\mathcal{H}, \mathbb{R}_{+})$.

2 $\forall n \in \mathbb{N}^*$ and $\forall \vartheta \in \mathcal{H}$, the function $z^{1:n} \mapsto \mathcal{T}(\mu_{\vartheta,n}, \mu_{\vartheta})$ belongs to $\mathscr{B}(\mathcal{Y}^n_{\vartheta}, \mathbb{R}_+)$

3 There exists $au \in [0,1[$ such that, $orall \, artheta \in \mathcal{H}$ and $orall \, arepsilon > 0,$

 $\limsup_{n} \mu_{\vartheta}^{n} \left[\left\{ z^{1:n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}(\mu_{\vartheta,n}, \mu_{\vartheta}) > \varepsilon \right\} \right] \leq \tau.$

4 There exist $\sigma \in [0, au]$ and $\varepsilon_1 > 0$ such that, $\forall \ \vartheta \in \mathcal{H}$ and $\forall \ \varepsilon \in]0, \varepsilon_1[$,

 $\liminf_{n} \mu_{\vartheta}^{n} \left[\left\{ z^{1:n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}(\mu_{\vartheta,n}, \mu_{\vartheta}) > \varepsilon \right\} \right] \geq \sigma.$

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020

(日) (周) (日) (日)

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.

- **1** For any $n \in \mathbb{N}^*$, $\omega \mapsto \mathcal{T}(\mu_n, \mu_\star)$ is \mathcal{A} -measurable as a function from Ω to \mathbb{R}_+ .
- 2 $\mathcal{T}(\mu_n, \mu_\star) \rightarrow 0$, **P**-a.s., as $n \rightarrow \infty$.

Axiom [B2] (under B1)

- $\widetilde{\forall} \ \vartheta \in \mathcal{H}$, there exists unique $\mu_{\vartheta} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_p(\mathcal{Y})$, such that the following occurs.
 - **1** The function $\vartheta \mapsto \mathcal{T}(\mu_{\vartheta}, \mu_{\star})$ belongs to $\mathscr{B}(\mathcal{H}, \mathbb{R}_+)$.
 - **2** $\forall n \in \mathbb{N}^*$ and $\widetilde{\forall} \vartheta \in \mathcal{H}$, the function $z^{1:n} \mapsto \mathcal{T}(\mu_{\vartheta,n}, \mu_{\vartheta})$ belongs to $\mathscr{B}(\mathcal{Y}^n_{\vartheta}, \mathbb{R}_+)$.

There exists $au \in [0,1[$ such that, $orall \ artheta \in \mathcal{H}$ and $orall \ arepsilon > 0,$

 $\limsup_{n} \mu_{\vartheta}^{n} \left[\left\{ z^{1:n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}(\mu_{\vartheta,n}, \mu_{\vartheta}) > \varepsilon \right\} \right] \leq \tau.$

4 There exist $\sigma \in [0, \tau]$ and $\varepsilon_1 > 0$ such that, $\forall \ \vartheta \in \mathcal{H}$ and $\forall \ \varepsilon \in]0, \varepsilon_1[$,

 $\liminf_{n} \mu_{\vartheta}^{n} \left[\left\{ z^{1:n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}(\mu_{\vartheta,n},\mu_{\vartheta}) > \varepsilon \right\} \right] \geq \sigma.$

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020 10 / 14

(日) (周) (日) (日)

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.

- **1** For any $n \in \mathbb{N}^*$, $\omega \mapsto \mathcal{T}(\mu_n, \mu_\star)$ is \mathcal{A} -measurable as a function from Ω to \mathbb{R}_+ .
- 2 $\mathcal{T}(\mu_n, \mu_\star) \rightarrow 0$, **P**-a.s., as $n \rightarrow \infty$.

Axiom [B2] (under B1)

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}$, there exists unique $\mu_{\vartheta} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_p(\mathcal{Y})$, such that the following occurs.

- **1** The function $\vartheta \mapsto \mathcal{T}(\mu_{\vartheta}, \mu_{\star})$ belongs to $\mathscr{B}(\mathcal{H}, \mathbb{R}_+)$.
- $2 \quad \forall \ n \in \mathbb{N}^* \text{ and } \widetilde{\forall} \ \vartheta \in \mathcal{H}, \text{ the function } z^{1:n} \mapsto \mathcal{T}(\mu_{\vartheta,n}, \mu_{\vartheta}) \text{ belongs to } \mathscr{B}(\mathcal{Y}^n_{\vartheta}, \mathbb{R}_+).$
- 3 There exists $\tau \in [0, 1[$ such that, $\widetilde{\forall} \ \vartheta \in \mathcal{H}$ and $\forall \ \varepsilon > 0$,

 $\limsup_{n} \mu_{\vartheta}^{n} \left[\left\{ z^{1:n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}(\mu_{\vartheta,n},\mu_{\vartheta}) > \varepsilon \right\} \right] \leq \tau.$

4 There exist $\sigma \in [0, \tau]$ and $\varepsilon_1 > 0$ such that, $\forall \ \vartheta \in \mathcal{H}$ and $\forall \ \varepsilon \in]0, \varepsilon_1[$,

 $\liminf_{n} \mu_{\vartheta}^{n} \left[\left\{ z^{1:n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}(\mu_{\vartheta,n},\mu_{\vartheta}) > \varepsilon \right\} \right] \geq \sigma.$

Marco Tarsia (Insubria - DiSAT)

(ロ) (同) (ヨ) (ヨ)

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.

- **1** For any $n \in \mathbb{N}^*$, $\omega \mapsto \mathcal{T}(\mu_n, \mu_*)$ is \mathcal{A} -measurable as a function from Ω to \mathbb{R}_+ .
- 2 $\mathcal{T}(\mu_n, \mu_\star) \rightarrow 0$, **P**-a.s., as $n \rightarrow \infty$.

Axiom [B2] (under B1)

 $\widetilde{\forall} \ \vartheta \in \mathcal{H}$, there exists unique $\mu_{\vartheta} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.

- **1** The function $\vartheta \mapsto \mathcal{T}(\mu_{\vartheta}, \mu_{\star})$ belongs to $\mathscr{B}(\mathcal{H}, \mathbb{R}_+)$.
- $2 \quad \forall \ n \in \mathbb{N}^* \text{ and } \widetilde{\forall} \ \vartheta \in \mathcal{H}, \text{ the function } z^{1:n} \mapsto \mathcal{T}(\mu_{\vartheta,n}, \mu_{\vartheta}) \text{ belongs to } \mathscr{B}(\mathcal{Y}^n_{\vartheta}, \mathbb{R}_+).$
- **3** There exists $\tau \in [0, 1[$ such that, $\forall \vartheta \in \mathcal{H}$ and $\forall \varepsilon > 0$,

 $\limsup_{n} \mu_{\vartheta}^{n} \left[\left\{ z^{1:n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}(\mu_{\vartheta,n},\mu_{\vartheta}) > \varepsilon \right\} \right] \leq \tau.$

4 There exist $\sigma \in [0, \tau]$ and $\varepsilon_1 > 0$ such that, $\widecheck{\forall} \ \vartheta \in \mathcal{H}$ and $\forall \ \varepsilon \in]0, \varepsilon_1[$,

$$\liminf_{n} \mu_{\vartheta}^{n} \left[\left\{ z^{1:n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}(\mu_{\vartheta,n}, \mu_{\vartheta}) > \varepsilon \right\} \right] \geq \sigma.$$

Marco Tarsia (Insubria - DiSAT)

< ロ > < 同 > < 三 > < 三 >

3 of B2 is equivalent to any version of that in which an upper bound for ε is imposed.

Furthermore if, $\forall \vartheta \in \mathcal{H}$ and $\forall \varepsilon > 0$, $\mu_{\vartheta}^{n}[\mathcal{T}(\mu_{\vartheta,n}, \mu_{\vartheta}) > \varepsilon] \to 0$ as $n \to \infty$ (shortly put), then any $\tau \in [0, 1]$ satisfies 3 of B2 while only $\sigma = 0$ but any $\varepsilon_{1} > 0$ fulfill 4 of B2.

Axiom [B3] (under 1 and 2 of B2)

There exists $\vartheta_{\star} \in \mathcal{H}$ which minimizes $\vartheta \mapsto \mathcal{T}(\mu_{\vartheta}, \mu_{\star})$ over \mathcal{H} : simbolically,

 $\vartheta_{\star} \in \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}(\mu_{(\,\cdot\,)},\mu_{\star}).$

We denote $\varepsilon_* \doteq \mathcal{T}(\mu_{\vartheta_*}, \mu_*) = \min_{\mathcal{H}} \mathcal{T}(\mu_{(*)}, \mu_*) \geq 0$ and, $\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ T_{\vartheta} \coloneqq \mathcal{T}(\mu_{\vartheta}, \mu_*) \geq \varepsilon_{*,*}$

Axiom [B4] (under B3)

There exist a neighborhood $U_* \subset \mathcal{H}$ of ϑ_* , a connected neighborhood $I_0 \subset \mathbb{R}_+$ of zero and a strictly increasing function $\psi : I_0 \to \mathbb{R}_+$ all such that, $\widetilde{\forall} \ \vartheta \in U_*$,

$$\mathcal{T}_{artheta} - arepsilon_{\star} \leq \psi ig(arrho_{\mathcal{H}}(artheta, artheta_{\star}) ig).$$

We write "for any $(y^{1,n})_n$ " meaning to vary of $(y^{1,n}(\omega))_n \equiv (y^{1,n})_n$, with $y^{1,n}(\omega) \equiv (y^{1,n})_n$ for any $e \in \mathbb{N}^*$, w.r.t. a $\omega \in \Omega$. Lastly, for $\varepsilon > 0$, we denote by ε^- any element of $[0, \varepsilon)$.

Marco Tarsia (Insubria - DiSAT)

Axiom [B3] (under 1 and 2 of B2)

There exists $\vartheta_{\star} \in \mathcal{H}$ which minimizes $\vartheta \mapsto \mathcal{T}(\mu_{\vartheta}, \mu_{\star})$ over \mathcal{H} : simbolically,

 $\vartheta_{\star} \in \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}(\mu_{(\,\cdot\,)},\mu_{\star}).$

We denote $\varepsilon_{\star} \doteq \mathcal{T}(\mu_{\vartheta_{\star}}, \mu_{\star}) = \min_{\mathcal{H}} \mathcal{T}(\mu_{(\cdot,\cdot)}, \mu_{\star}) \geq 0$ and, $\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \mathcal{T}_{\vartheta} \coloneqq \mathcal{T}(\mu_{\vartheta}, \mu_{\star}) \geq \varepsilon_{\star}$

Axiom [B4] (under B3)

There exist a neighborhood $U_* \subset \mathcal{H}$ of ϑ_* , a connected neighborhood $I_0 \subset \mathbb{R}_+$ of zero and a strictly increasing function $\psi : I_0 \to \mathbb{R}_+$ all such that, $\widetilde{\forall} \ \vartheta \in U_*$,

$$\mathcal{T}_{artheta} - arepsilon_{\star} \leq \psi ig(arrho_{\mathcal{H}}(artheta, artheta_{\star}) ig).$$

We write "for any $(y^{1,n})_n$ " meaning to vary of $(y^{1,n}(\omega))_n \equiv (y^{1,n})_n$, with $y^{1,n}(\omega) \equiv y^{1,n}$ in y^n for any $e \in \mathbb{N}^n$, w.r.t. a $\omega \in \Omega$. Lastly, for $\varepsilon > 0$, we denote by ε^{-1} any element of $[0, \varepsilon)$.

Marco Tarsia (Insubria - DiSAT)

Axiom [B3] (under 1 and 2 of B2)

There exists $\vartheta_{\star} \in \mathcal{H}$ which minimizes $\vartheta \mapsto \mathcal{T}(\mu_{\vartheta}, \mu_{\star})$ over \mathcal{H} : simbolically,

 $\vartheta_{\star} \in \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}(\mu_{(\,\cdot\,)}, \mu_{\star}).$

We denote $\varepsilon_\star \doteq \mathcal{T}(\mu_{\vartheta_\star}, \mu_\star) = \min_{\mathcal{H}} \mathcal{T}(\mu_{(+)}, \mu_\star) \geq 0$ and, $\forall \ \vartheta \in \mathcal{H}, \ \mathcal{T}_\vartheta \coloneqq \mathcal{T}(\mu_{\vartheta}, \mu_\star) \geq \varepsilon_\star$

Axiom [B4] (under B3)

There exist a neighborhood $U_* \subset \mathcal{H}$ of ϑ_* , a connected neighborhood $I_0 \subset \mathbb{R}_+$ of zero and a strictly increasing function $\psi: I_0 \to \mathbb{R}_+$ all such that, $\widetilde{\forall} \ \vartheta \in U_*$,

 $\mathcal{T}_{artheta} - arepsilon_{\star} \leq \psi ig(arrho_{\mathcal{H}}(artheta, artheta_{\star}) ig).$

We write "for any $(y^{1,n})_n$ " meaning to vary of $(y^{1,n}(\omega))_n \equiv (y^{1,n})_n$, with $y^{1,n}(\omega) \equiv y^{1,n}$ in y^n for any $x \in \mathbb{N}^n$, w.r.t. a $\omega \in \Omega$. Lastly, for $\varepsilon > 0$, we denote by ε^- any element of $[0, \varepsilon)$.

Marco Tarsia (Insubria - DiSAT)

-nsh**ne**h

Axiom [B3] (under 1 and 2 of B2)

There exists $\vartheta_{\star} \in \mathcal{H}$ which minimizes $\vartheta \mapsto \mathcal{T}(\mu_{\vartheta}, \mu_{\star})$ over \mathcal{H} : simbolically,

 $\vartheta_{\star} \in \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}(\mu_{(\,\cdot\,)}, \mu_{\star}).$

We denote $\varepsilon_{\star} \doteq \mathcal{T}(\mu_{\vartheta_{\star}}, \mu_{\star}) = \min_{\mathcal{H}} \mathcal{T}(\mu_{(\cdot, \cdot)}, \mu_{\star}) \ge 0$ and, $\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \mathcal{T}_{\vartheta} \coloneqq \mathcal{T}(\mu_{\vartheta}, \mu_{\star}) \ge \varepsilon_{\star}.$

Axiom [B4] (under B3)

There exist a neighborhood $U_* \subset \mathcal{H}$ of ϑ_* , a connected neighborhood $I_0 \subset \mathbb{R}_+$ of zero and a strictly increasing function $\psi : I_0 \to \mathbb{R}_+$ all such that, $\widetilde{\forall} \ \vartheta \in U_*$,

$$\mathcal{T}_{artheta} - arepsilon_{\star} \leq \psi ig(arrho_{\mathcal{H}}(artheta, artheta_{\star}) ig).$$

We write "for any $(y^{1:n})_n$ " meaning to vary of $(y^{1:n}(\omega))_n \equiv (y^{1:n})_n$, with $y^{1:n}(\omega) \equiv y^{1:n}$ in \mathcal{Y} for any $n \in \mathbb{N}^*$, w.r.t. a $\omega \in \Omega$. Lastly, for $\varepsilon > 0$, we denote by so any element of $[0, \varepsilon)$.

Marco Tarsia (Insubria - DiSAT)

-nsh**ne**h

Axiom [B3] (under 1 and 2 of B2)

There exists $\vartheta_{\star} \in \mathcal{H}$ which minimizes $\vartheta \mapsto \mathcal{T}(\mu_{\vartheta}, \mu_{\star})$ over \mathcal{H} : simbolically,

 $\vartheta_{\star} \in \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}(\mu_{(\,\cdot\,)}, \mu_{\star}).$

We denote $\varepsilon_{\star} \doteq \mathcal{T}(\mu_{\vartheta_{\star}}, \mu_{\star}) = \min_{\mathcal{H}} \mathcal{T}(\mu_{(\cdot, \cdot)}, \mu_{\star}) \ge 0$ and, $\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \mathcal{T}_{\vartheta} \coloneqq \mathcal{T}(\mu_{\vartheta}, \mu_{\star}) \ge \varepsilon_{\star}.$

Axiom [B4] (under B3)

There exist a neighborhood $U_{\star} \subset \mathcal{H}$ of ϑ_{\star} , a connected neighborhood $I_0 \subset \mathbb{R}_+$ of zero and a strictly increasing function $\psi \colon I_0 \to \mathbb{R}_+$ all such that, $\widetilde{\forall} \ \vartheta \in U_{\star}$,

$$\mathcal{T}_{\vartheta} - \varepsilon_{\star} \leq \psi \big(\varrho_{\mathcal{H}}(\vartheta, \vartheta_{\star}) \big).$$

We write "for any $(y^{1:n})_n$ " meaning to vary of $(y^{1:n}(\omega))_n \equiv (y^{1:n})_n$, with $y^{1:n}(\omega) \equiv y^{1:n}$ in \mathcal{Y}^n for any $n \in \mathbb{N}^*$, w.r.t. a $\omega \in \Omega$. Lastly, for $\varepsilon > 0$, we denote by ε^- any element of $[0, \varepsilon]$.

costnet

Marco Tarsia (Insubria - DiSAT)

Axiom [B3] (under 1 and 2 of B2)

There exists $\vartheta_{\star} \in \mathcal{H}$ which minimizes $\vartheta \mapsto \mathcal{T}(\mu_{\vartheta}, \mu_{\star})$ over \mathcal{H} : simbolically,

 $\vartheta_{\star} \in \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}(\mu_{(\,\cdot\,)}, \mu_{\star}).$

We denote $\varepsilon_{\star} \doteq \mathcal{T}(\mu_{\vartheta_{\star}}, \mu_{\star}) = \min_{\mathcal{H}} \mathcal{T}(\mu_{(\cdot, \cdot)}, \mu_{\star}) \ge 0$ and, $\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \mathcal{T}_{\vartheta} \coloneqq \mathcal{T}(\mu_{\vartheta}, \mu_{\star}) \ge \varepsilon_{\star}.$

Axiom [B4] (under B3)

There exist a neighborhood $U_{\star} \subset \mathcal{H}$ of ϑ_{\star} , a connected neighborhood $I_0 \subset \mathbb{R}_+$ of zero and a strictly increasing function $\psi \colon I_0 \to \mathbb{R}_+$ all such that, $\widetilde{\forall} \ \vartheta \in U_{\star}$,

$$\mathcal{T}_{\vartheta} - \varepsilon_{\star} \leq \psi \big(\varrho_{\mathcal{H}}(\vartheta, \vartheta_{\star}) \big).$$

We write "for any $(y^{1:n})_n$ " meaning to vary of $(y^{1:n}(\omega))_n \equiv (y^{1:n})_n$, with $y^{1:n}(\omega) \equiv y^{1:n}$ in \mathcal{Y}^n for any $n \in \mathbb{N}^*$, w.r.t. a $\omega \in \Omega$. Lastly, for $n \geq 0$, we denote by any element of [0, 1].

Marco Tarsia (Insubria - DiSAT)

costnet

Axiom [B3] (under 1 and 2 of B2)

There exists $\vartheta_{\star} \in \mathcal{H}$ which minimizes $\vartheta \mapsto \mathcal{T}(\mu_{\vartheta}, \mu_{\star})$ over \mathcal{H} : simbolically,

 $\vartheta_{\star} \in \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}(\mu_{(\,\cdot\,)}, \mu_{\star}).$

We denote $\varepsilon_{\star} \doteq \mathcal{T}(\mu_{\vartheta_{\star}}, \mu_{\star}) = \min_{\mathcal{H}} \mathcal{T}(\mu_{(.)}, \mu_{\star}) \geq 0$ and, $\widetilde{\forall} \ \vartheta \in \mathcal{H}, \ \mathcal{T}_{\vartheta} \coloneqq \mathcal{T}(\mu_{\vartheta}, \mu_{\star}) \geq \varepsilon_{\star}$.

Axiom [B4] (under B3)

There exist a neighborhood $U_{\star} \subset \mathcal{H}$ of ϑ_{\star} , a connected neighborhood $I_0 \subset \mathbb{R}_+$ of zero and a strictly increasing function $\psi \colon I_0 \to \mathbb{R}_+$ all such that, $\widetilde{\forall} \ \vartheta \in U_{\star}$,

$$\mathcal{T}_{artheta} - arepsilon_{\star} \leq \psi ig(arrho_{\mathcal{H}}(artheta, artheta_{\star}) ig).$$

We write "for any $(y^{1:n})_n$ " meaning to vary of $(y^{1:n}(\omega))_n \equiv (y^{1:n})_n$, with $y^{1:n}(\omega) \equiv y^{1:n}$ in \mathcal{Y}^n for any $n \in \mathbb{N}^*$, w.r.t. a $\omega \in \Omega$. Lastly, for $\varepsilon > 0$, we denote by ε^- any element of $]0, \varepsilon]$.

Marco Tarsia (Insubria - DiSAT)

-ostnet

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as $\varepsilon_* < \varepsilon_0$, for $\varepsilon \in]0, \varepsilon_0 - \varepsilon_*[, (y^{1:n})_n \text{ with } n \equiv n_{\varepsilon} \text{ large enough and with probability } P \text{ going to } 1 \text{ as } n \to \infty.$

< A >

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as $\varepsilon_{\star} < \varepsilon_{0}$, for $\varepsilon \in]0, \varepsilon_{0} - \varepsilon_{\star}[, (y^{1:n})_{n}$ with $n \equiv n_{\varepsilon}$ large enough and with probability P going to 1 as $n \to \infty$. 1 $\pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} [\mathcal{T}_{(.)} \ge \varepsilon_{\star} + \varepsilon^{-}/3] \ge (1-\tau)\pi [\varepsilon_{\star} + \varepsilon^{-}/3 \le \mathcal{T}_{(.)} \le \varepsilon_{\star} + \varepsilon/3].$

- 2 $\pi_{v^{1:n}}^{\varepsilon_{\star}+\varepsilon} [\mathcal{H} \setminus \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}_{(\cdot)}] \ge (1-\tau) \pi [\varepsilon_{\star} < \mathcal{T}_{(\cdot)} \le \varepsilon_{\star} + \varepsilon/3].$
- 3 Under assumption 4 of B2, let's suppose that in 3 of B0 the equality holds and that $\varepsilon_* < \varepsilon_1/2$.

 $T_{(1)} \le c_{1} + 5\epsilon/3 + \epsilon_{7} |T_{(1)} \ge c_{2} + 5\epsilon/3 > 0$

42176.2 c + c / a | 2 ⁻¹ - c | a + c / a S / c | S c + c / a |

Under assumption B4, for any $\zeta \in b \setminus \{0\}$ and r > 0 small enough,

 $(2^{+1})^{\circ}[e_{H}(\cdot, \delta_{*}) \ge t] \ge \pi (2^{+1})^{\circ}[T_{(*)} \ge c_{*} + \psi(0)]$

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020 1

12/14

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as $\varepsilon_{\star} < \varepsilon_{0}$, for $\varepsilon \in]0, \varepsilon_{0} - \varepsilon_{\star}[, (y^{1:n})_{n}$ with $n \equiv n_{\varepsilon}$ large enough and with probability P going to 1 as $n \to \infty$. 1 $\pi_{y_{1:n}}^{\varepsilon_{\star}+\varepsilon} [\mathcal{T}_{(.)} \ge \varepsilon_{\star} + \varepsilon^{-}/3] \ge (1 - \tau) \pi [\varepsilon_{\star} + \varepsilon^{-}/3 \le \mathcal{T}_{(.)} \le \varepsilon_{\star} + \varepsilon/3].$ 2 $\pi_{y_{1:n}}^{\varepsilon_{\star}+\varepsilon} [\mathcal{H} \setminus \arg \min_{\mathcal{H}} \mathcal{T}_{(.)}] \ge (1 - \tau) \pi [\varepsilon_{\star} < \mathcal{T}_{(.)} \le \varepsilon_{\star} + \varepsilon/3].$

3 Under assumption 4 of B2, let's suppose that in 3 of B0 the equality holds and that $\varepsilon_* < \varepsilon_1/2$.

 $= (1 - \sigma)\pi \left[\mathcal{T}_{i,1} \leq \epsilon_i + 5\epsilon/3 \right] + \tau\pi \left[\mathcal{T}_{i,1} > \epsilon_i + 5\epsilon/3 \right] > 0$

Under assumption B4, for any $\zeta \in \mathfrak{h} \setminus \{0\}$ and r > 0 small enough,

 $2^{n+1}[e_n(-,v_i) \ge r] \ge \pi 2^{n+1}[T_{i,j} \ge c_i + v(i)].$

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as $\varepsilon_* < \varepsilon_0$, for $\varepsilon \in]0, \varepsilon_0 - \varepsilon_*[, (y^{1:n})_n \text{ with } n \equiv n_{\varepsilon} \text{ large enough and with probability } \mathbf{P} \text{ going to } 1 \text{ as } n \to \infty.$

$$1 \quad \pi_{v^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{T}_{(\,\cdot\,)} \geq \varepsilon_{\star} + \varepsilon^{-}/3 \right] \geq (1-\tau) \, \pi \left[\varepsilon_{\star} + \varepsilon^{-}/3 \leq \mathcal{T}_{(\,\cdot\,)} \leq \varepsilon_{\star} + \varepsilon/3 \right].$$

$$2 \quad \pi_{\mathbf{y}^{\mathbf{1}:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{H} \setminus \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}_{(\cdot)} \right] \geq (1-\tau) \, \pi \left[\varepsilon_{\star} < \mathcal{T}_{(\cdot)} \leq \varepsilon_{\star} + \varepsilon/3 \right].$$

3 Under assumption 4 of B2, let's suppose that in 3 of B0 the equality holds and that $\varepsilon_* < \varepsilon_1/2$. Then, for any $\varepsilon \in]0, \varepsilon_0 - \varepsilon_*[$ even more enough small,

$$\lambda_{\varepsilon} \coloneqq (1 - \sigma) \pi \left[\mathcal{T}_{(.)} \le \varepsilon_{\star} + 5\varepsilon/3 \right] + \tau \pi \left[\mathcal{T}_{(.)} > \varepsilon_{\star} + 5\varepsilon/3 \right] > 0$$

and

$$\pi_{j^{1:n}}^{\varepsilon_*+\varepsilon} \left[\mathcal{T}_{(\,\cdot\,)} \geq \varepsilon_* + \varepsilon^-/3 \right] \geq \frac{1-\tau}{\lambda_{\varepsilon}} \pi \left[\varepsilon_* + \varepsilon^-/3 \leq \mathcal{T}_{(\,\cdot\,)} \leq \varepsilon_* + \varepsilon/3 \right].$$

Under assumption B4, for any $\zeta \in \mathfrak{h} \setminus \{0\}$ and r > 0 small enough,

 $(2^{+*}_{2^{+}}[e_{\ell}(\cdot, \vartheta_{\ell}) \ge r] \ge r(2^{+*}_{2^{+}}[\mathcal{T}_{(\cdot)} \ge c_{\ell} + \vartheta(0)]$

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as $\varepsilon_* < \varepsilon_0$, for $\varepsilon \in]0, \varepsilon_0 - \varepsilon_*[, (y^{1:n})_n \text{ with } n \equiv n_{\varepsilon} \text{ large enough and with probability } \mathbf{P} \text{ going to } 1 \text{ as } n \to \infty.$

$$1 \quad \pi_{v^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{T}_{(\,\cdot\,)} \geq \varepsilon_{\star} + \varepsilon^{-}/3 \right] \geq (1-\tau) \, \pi \left[\varepsilon_{\star} + \varepsilon^{-}/3 \leq \mathcal{T}_{(\,\cdot\,)} \leq \varepsilon_{\star} + \varepsilon/3 \right].$$

$$2 \quad \pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{H} \setminus \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}_{(\cdot)} \right] \geq (1-\tau) \pi \left[\varepsilon_{\star} < \mathcal{T}_{(\cdot)} \leq \varepsilon_{\star} + \varepsilon/3 \right].$$

3 Under assumption 4 of B2, let's suppose that in 3 of B0 the equality holds and that $\varepsilon_* < \varepsilon_1/2$. Then, for any $\varepsilon \in]0, \varepsilon_0 - \varepsilon_*[$ even more enough small,

$$\lambda_{\varepsilon} \coloneqq (1 - \sigma) \pi \left[\mathcal{T}_{(.)} \le \varepsilon_{\star} + 5\varepsilon/3 \right] + \tau \pi \left[\mathcal{T}_{(.)} > \varepsilon_{\star} + 5\varepsilon/3 \right] > 0$$

and

$$\pi_{j^{1:n}}^{\varepsilon_*+\varepsilon} \left[\mathcal{T}_{(\,\cdot\,)} \geq \varepsilon_* + \varepsilon^-/3 \right] \geq \frac{1-\tau}{\lambda_{\varepsilon}} \pi \left[\varepsilon_* + \varepsilon^-/3 \leq \mathcal{T}_{(\,\cdot\,)} \leq \varepsilon_* + \varepsilon/3 \right].$$

Under assumption B4, for any $\zeta \in \mathfrak{h} \setminus \{0\}$ and r > 0 small enough,

 $(e_{2n})^{*} [e_{2n}(\cdots, v_n) \ge r] \ge \pi (e_{2n})^{*} [\mathcal{T}_{(1)} \ge c_n + \psi(0)].$

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020

12/14

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as $\varepsilon_* < \varepsilon_0$, for $\varepsilon \in]0, \varepsilon_0 - \varepsilon_*[, (y^{1:n})_n \text{ with } n \equiv n_{\varepsilon} \text{ large enough and with probability } \mathbf{P} \text{ going to } 1 \text{ as } n \to \infty.$

$$1 \quad \pi_{v^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{T}_{(\,\cdot\,)} \geq \varepsilon_{\star} + \varepsilon^{-}/3 \right] \geq (1-\tau) \, \pi \left[\varepsilon_{\star} + \varepsilon^{-}/3 \leq \mathcal{T}_{(\,\cdot\,)} \leq \varepsilon_{\star} + \varepsilon/3 \right].$$

$$2 \quad \pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{H} \setminus \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}_{(\cdot)} \right] \geq (1-\tau) \, \pi \left[\varepsilon_{\star} < \mathcal{T}_{(\cdot)} \leq \varepsilon_{\star} + \varepsilon/3 \right].$$

3 Under assumption 4 of B2, let's suppose that in 3 of B0 the equality holds and that $\varepsilon_* < \varepsilon_1/2$. Then, for any $\varepsilon \in]0, \varepsilon_0 - \varepsilon_*[$ even more enough small,

$$\lambda_{\varepsilon} \coloneqq (1 - \sigma) \pi \big[\mathcal{T}_{(\,.\,)} \leq \varepsilon_{\star} + 5\varepsilon/3 \big] + \tau \pi \big[\mathcal{T}_{(\,.\,)} > \varepsilon_{\star} + 5\varepsilon/3 \big] > 0$$

and

$$\pi_{j^{1:n}}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(\,\cdot\,)}\geq\varepsilon_{\star}+\varepsilon^{-}/3\right]\geq\frac{1-\tau}{\lambda_{\varepsilon}}\,\pi\left[\varepsilon_{\star}+\varepsilon^{-}/3\leq\mathcal{T}_{(\,\cdot\,)}\leq\varepsilon_{\star}+\varepsilon/3\right].$$

Under assumption B4, for any $\zeta \in I_0 \setminus \{0\}$ and r > 0 small enough,

 $\pi_{\boldsymbol{\gamma}^{\mathtt{lin}}}^{\varepsilon_{\star}+\varepsilon} \big[\varrho_{\mathcal{H}}(\,\cdot\,,\vartheta_{\star}) \geq r \big] \geq \pi_{\boldsymbol{\gamma}^{\mathtt{lin}}}^{\varepsilon_{\star}+\varepsilon} \big[\,\mathcal{T}_{(\,\cdot\,)} \geq \varepsilon_{\star} + \psi(\zeta) \big]$

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020

12/14

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as $\varepsilon_* < \varepsilon_0$, for $\varepsilon \in]0, \varepsilon_0 - \varepsilon_*[, (y^{1:n})_n \text{ with } n \equiv n_{\varepsilon} \text{ large enough and with probability } \mathbf{P} \text{ going to } 1 \text{ as } n \to \infty.$

$$1 \quad \pi_{v^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{T}_{(\,\cdot\,)} \geq \varepsilon_{\star} + \varepsilon^{-}/3 \right] \geq (1-\tau) \, \pi \left[\varepsilon_{\star} + \varepsilon^{-}/3 \leq \mathcal{T}_{(\,\cdot\,)} \leq \varepsilon_{\star} + \varepsilon/3 \right].$$

$$2 \quad \pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{H} \setminus \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}_{(\cdot)} \right] \geq (1-\tau) \pi \left[\varepsilon_{\star} < \mathcal{T}_{(\cdot)} \leq \varepsilon_{\star} + \varepsilon/3 \right].$$

3 Under assumption 4 of B2, let's suppose that in 3 of B0 the equality holds and that $\varepsilon_* < \varepsilon_1/2$. Then, for any $\varepsilon \in]0, \varepsilon_0 - \varepsilon_*[$ even more enough small,

$$\lambda_{\varepsilon} \coloneqq (1 - \sigma) \pi \left[\mathcal{T}_{(\,\cdot\,)} \le \varepsilon_{\star} + 5\varepsilon/3 \right] + \tau \pi \left[\mathcal{T}_{(\,\cdot\,)} > \varepsilon_{\star} + 5\varepsilon/3 \right] > 0$$

and

$$\pi_{y^{\mathbf{1}:n}}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(\,\cdot\,)}\geq\varepsilon_{\star}+\varepsilon^{-}/3\right]\geq\frac{1-\tau}{\lambda_{\varepsilon}}\,\pi\left[\varepsilon_{\star}+\varepsilon^{-}/3\leq\mathcal{T}_{(\,\cdot\,)}\leq\varepsilon_{\star}+\varepsilon/3\right].$$

Under assumption B4, for any $\zeta \in I_0 \setminus \{0\}$ and r > 0 small enough,

 $\pi_{arphi^{1,n}}^{arepsilon_{\star}+arepsilon}\left[arepsilon_{\mathcal{H}}(\,\cdot\,,artheta_{\star})\geq r
ight]\geq\pi_{arphi^{1,n}}^{arepsilon_{\star}+arepsilon}\left[\mathcal{T}_{(\,\cdot\,)}\geqarepsilon_{\star}+\psi(\zeta)
ight]$

Marco Tarsia (Insubria - DiSAT)

Mathematical Foundation of ABC

24 September 2020 12 / 14

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as $\varepsilon_* < \varepsilon_0$, for $\varepsilon \in]0, \varepsilon_0 - \varepsilon_*[, (y^{1:n})_n \text{ with } n \equiv n_{\varepsilon} \text{ large enough and with probability } \mathbf{P} \text{ going to } 1 \text{ as } n \to \infty.$

$$1 \quad \pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{T}_{(.)} \geq \varepsilon_{\star} + \varepsilon^{-}/3 \right] \geq (1-\tau) \pi \left[\varepsilon_{\star} + \varepsilon^{-}/3 \leq \mathcal{T}_{(.)} \leq \varepsilon_{\star} + \varepsilon/3 \right].$$

$$2 \quad \pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{H} \setminus \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}_{(\cdot)} \right] \geq (1-\tau) \pi \left[\varepsilon_{\star} < \mathcal{T}_{(\cdot)} \leq \varepsilon_{\star} + \varepsilon/3 \right].$$

3 Under assumption 4 of B2, let's suppose that in 3 of B0 the equality holds and that $\varepsilon_* < \varepsilon_1/2$. Then, for any $\varepsilon \in]0, \varepsilon_0 - \varepsilon_*[$ even more enough small,

$$\lambda_{\varepsilon} \coloneqq (1 - \sigma) \pi \left[\mathcal{T}_{(\,\cdot\,)} \le \varepsilon_{\star} + 5\varepsilon/3 \right] + \tau \pi \left[\mathcal{T}_{(\,\cdot\,)} > \varepsilon_{\star} + 5\varepsilon/3 \right] > 0$$

and

$$\pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(\,\cdot\,)}\geq\varepsilon_{\star}+\varepsilon^{-}/3\right]\geq\frac{1-\tau}{\lambda_{\varepsilon}}\,\pi\left[\varepsilon_{\star}+\varepsilon^{-}/3\leq\mathcal{T}_{(\,\cdot\,)}\leq\varepsilon_{\star}+\varepsilon/3\right].$$

4 Under assumption B4, for any $\zeta \in I_0 \setminus \{0\}$ and r > 0 small enough,

$$\pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\varrho_{\mathcal{H}}(\,\cdot\,,\vartheta_{\star}) \geq r \right] \geq \pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{T}_{(\,\cdot\,)} \geq \varepsilon_{\star} + \psi(\zeta) \right]$$

for which lower bounds of a and eventually c hold if also ζ is small enough.

Marco Tarsia (Insubria - DiSAT)

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as $\varepsilon_* < \varepsilon_0$, for $\varepsilon \in]0, \varepsilon_0 - \varepsilon_*[, (y^{1:n})_n \text{ with } n \equiv n_{\varepsilon} \text{ large enough and with probability } \mathbf{P} \text{ going to } 1 \text{ as } n \to \infty.$

$$1 \quad \pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{T}_{(.)} \geq \varepsilon_{\star} + \varepsilon^{-}/3 \right] \geq (1-\tau) \pi \left[\varepsilon_{\star} + \varepsilon^{-}/3 \leq \mathcal{T}_{(.)} \leq \varepsilon_{\star} + \varepsilon/3 \right].$$

$$2 \quad \pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{H} \setminus \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}_{(\cdot)} \right] \geq (1-\tau) \pi \left[\varepsilon_{\star} < \mathcal{T}_{(\cdot)} \leq \varepsilon_{\star} + \varepsilon/3 \right].$$

3 Under assumption 4 of B2, let's suppose that in 3 of B0 the equality holds and that $\varepsilon_* < \varepsilon_1/2$. Then, for any $\varepsilon \in]0, \varepsilon_0 - \varepsilon_*[$ even more enough small,

$$\lambda_{\varepsilon} \coloneqq (1 - \sigma) \pi \left[\mathcal{T}_{(\,\cdot\,)} \le \varepsilon_{\star} + 5\varepsilon/3 \right] + \tau \pi \left[\mathcal{T}_{(\,\cdot\,)} > \varepsilon_{\star} + 5\varepsilon/3 \right] > 0$$

and

$$\pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(\,\cdot\,)}\geq\varepsilon_{\star}+\varepsilon^{-}/3\right]\geq\frac{1-\tau}{\lambda_{\varepsilon}}\,\pi\left[\varepsilon_{\star}+\varepsilon^{-}/3\leq\mathcal{T}_{(\,\cdot\,)}\leq\varepsilon_{\star}+\varepsilon/3\right].$$

4 Under assumption B4, for any $\zeta \in I_0 \setminus \{0\}$ and r > 0 small enough,

$$\pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\varrho_{\mathcal{H}}(\,\cdot\,,\vartheta_{\star}) \geq r \right] \geq \pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{T}_{(\,\cdot\,)} \geq \varepsilon_{\star} + \psi(\zeta) \right]$$

for which lower bounds of a and eventually c hold if also ζ is small enough.

Marco Tarsia (Insubria - DiSAT)

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as $\varepsilon_* < \varepsilon_0$, for $\varepsilon \in]0, \varepsilon_0 - \varepsilon_*[, (y^{1:n})_n \text{ with } n \equiv n_{\varepsilon} \text{ large enough and with probability } P \text{ going to } 1 \text{ as } n \to \infty.$

$$1 \quad \pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{T}_{(\,\cdot\,)} \geq \varepsilon_{\star} + \varepsilon^{-}/3 \right] \geq (1-\tau) \pi \left[\varepsilon_{\star} + \varepsilon^{-}/3 \leq \mathcal{T}_{(\,\cdot\,)} \leq \varepsilon_{\star} + \varepsilon/3 \right].$$

$$2 \pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{H} \setminus \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}_{(\cdot)} \right] \geq (1-\tau) \pi \left[\varepsilon_{\star} < \mathcal{T}_{(\cdot)} \leq \varepsilon_{\star} + \varepsilon/3 \right].$$

3 Under assumption 4 of B2, let's suppose that in 3 of B0 the equality holds and that $\varepsilon_* < \varepsilon_1/2$. Then, for any $\varepsilon \in]0, \varepsilon_0 - \varepsilon_*[$ even more enough small,

$$\lambda_{\varepsilon} \coloneqq (1 - \sigma) \pi \left[\mathcal{T}_{(\,\cdot\,)} \le \varepsilon_{\star} + 5\varepsilon/3 \right] + \tau \pi \left[\mathcal{T}_{(\,\cdot\,)} > \varepsilon_{\star} + 5\varepsilon/3 \right] > 0$$

and

$$\pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(\,\cdot\,)}\geq\varepsilon_{\star}+\varepsilon^{-}/3\right]\geq\frac{1-\tau}{\lambda_{\varepsilon}}\,\pi\left[\varepsilon_{\star}+\varepsilon^{-}/3\leq\mathcal{T}_{(\,\cdot\,)}\leq\varepsilon_{\star}+\varepsilon/3\right].$$

4 Under assumption B4, for any $\zeta \in I_0 \setminus \{0\}$ and r > 0 small enough,

$$\pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\varrho_{\mathcal{H}}(\,\cdot\,,\vartheta_{\star}) \geq r \right] \geq \pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{T}_{(\,\cdot\,)} \geq \varepsilon_{\star} + \psi(\zeta) \right]$$

for which lower bounds of a and eventually c hold if also ζ is small enough.

Axiom [A2'] (under A1)

There exist $\delta, \varepsilon' \in]0, \infty[$ and $g \in L^1(\pi)$ with $g \ge \delta$ $[\pi]$ all such that, $\forall \ \vartheta \in \mathcal{H}$ and $\forall (z^{1:n})_n$ with $z^{1:n} \in D_{\varepsilon'}^n$ for any $n \in \mathbb{N}^*$,

 $\delta \leq \liminf_n f_{\vartheta}^n(z^{1:n}) \quad \text{and} \quad \limsup_n f_{\vartheta}^n(z^{1:n}) \leq g(\vartheta).$

Proposition

Under assumptions B0, B1, 1 and 2 of B2, B3, A1 and A2', the following occurs so far as $\varepsilon_* < \varepsilon_0 \wedge \varepsilon'$ and for $\varepsilon \in]0, \varepsilon_0 \wedge \varepsilon' - \varepsilon_*[$ and P-a.a. $(y^{1:n})_n$.

```
[1] Processon G. S. (1997) [2018] Science S. (2018) [2018] Science of Characteristic and Characteristic a
```



(a)

Axiom [A2'] (under A1)

There exist $\delta, \varepsilon' \in]0, \infty[$ and $g \in L^1(\pi)$ with $g \ge \delta$ $[\pi]$ all such that, $\forall \vartheta \in \mathcal{H}$ and $\forall (z^{1:n})_n$ with $z^{1:n} \in D_{\varepsilon'}^n$ for any $n \in \mathbb{N}^*$,

 $\delta \leq \liminf_n f_{\vartheta}^n(z^{1:n}) \quad \text{and} \quad \limsup_n f_{\vartheta}^n(z^{1:n}) \leq g(\vartheta).$

Proposition

Under assumptions B0, B1, 1 and 2 of B2, B3, A1 and A2', the following occurs so far as $\varepsilon_* < \varepsilon_0 \wedge \varepsilon'$ and for $\varepsilon \in]0, \varepsilon_0 \wedge \varepsilon' - \varepsilon_*[$ and P-a.a. $(y^{1:n})_n$.

For any
$$\zeta > 0$$
, $\pi_{g^{\pm}n}^{e_{\pm}+e}[\mathcal{T}(\cdot) \ge e_{+} + \zeta] \ge \frac{1}{\|\|g\|\|_{1}}\pi[\mathcal{T}(\cdot) \ge e_{+} + \zeta]$.
 $\|\|\pi_{g}^{e_{\pm}e_{\pm}}\|_{\mathcal{H}} \wedge \operatorname{arg} \min_{\mathcal{H}}\mathcal{T}(\cdot)\| \ge \frac{\delta}{\|\|g\|\|_{1}}\pi[\mathcal{H} \wedge \operatorname{arg} \min_{\mathcal{H}}\mathcal{T}(\cdot)]$.



(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Axiom [A2'] (under A1)

There exist $\delta, \varepsilon' \in]0, \infty[$ and $g \in L^1(\pi)$ with $g \ge \delta$ $[\pi]$ all such that, $\forall \vartheta \in \mathcal{H}$ and $\forall (z^{1:n})_n$ with $z^{1:n} \in D_{\varepsilon'}^n$ for any $n \in \mathbb{N}^*$,

 $\delta \leq \liminf_{n} f_{\vartheta}^{n}(z^{1:n}) \quad \text{and} \quad \limsup_{n} f_{\vartheta}^{n}(z^{1:n}) \leq g(\vartheta).$

Proposition

Under assumptions B0, B1, 1 and 2 of B2, B3, A1 and A2', the following occurs so far as $\varepsilon_{\star} < \varepsilon_0 \wedge \varepsilon'$ and for $\varepsilon \in]0, \varepsilon_0 \wedge \varepsilon' - \varepsilon_{\star}[$ and P-a.a. $(y^{1:n})_n$.

 $= \pi_{y^{1,n}}^{\varepsilon_*+\varepsilon} \left[\mathcal{H} \setminus \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}_{(\cdot,)} \right] \geq \frac{\sigma}{\|\sigma\|_{\cdot}} \pi \left[\mathcal{H} \setminus \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}_{(\cdot,)} \right].$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Axiom [A2'] (under A1)

There exist $\delta, \varepsilon' \in]0, \infty[$ and $g \in L^1(\pi)$ with $g \ge \delta$ $[\pi]$ all such that, $\forall \vartheta \in \mathcal{H}$ and $\forall (z^{1:n})_n$ with $z^{1:n} \in D_{\varepsilon'}^n$ for any $n \in \mathbb{N}^*$,

 $\delta \leq \liminf_{n} f_{\vartheta}^{n}(z^{1:n}) \quad \text{and} \quad \limsup_{n} f_{\vartheta}^{n}(z^{1:n}) \leq g(\vartheta).$

Proposition

Under assumptions B0, B1, 1 and 2 of B2, B3, A1 and A2', the following occurs so far as $\varepsilon_{\star} < \varepsilon_0 \land \varepsilon'$ and for $\varepsilon \in]0, \varepsilon_0 \land \varepsilon' - \varepsilon_{\star}[$ and P-a.a. $(y^{1:n})_n$.

1 For any
$$\zeta > 0$$
, $\pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} [\mathcal{T}_{(\cdot)} \ge \varepsilon_{\star} + \zeta] \ge \frac{\delta}{\|g\|_{1}} \pi [\mathcal{T}_{(\cdot)} \ge \varepsilon_{\star} + \zeta].$

 $2 \quad \pi_{y^{1:n}}^{\varepsilon_{\star}+\varepsilon} \left[\mathcal{H} \setminus \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}_{(\cdot)} \right] \geq \frac{o}{\|g\|_{1}} \pi \left[\mathcal{H} \setminus \operatorname{arg\,min}_{\mathcal{H}} \mathcal{T}_{(\cdot)} \right].$

Marco Tarsia (Insubria - DiSAT) Mathematical Foundation of ABC 24 September 2020

3 K 4 B K

13/14

Axiom [A2'] (under A1)

There exist $\delta, \varepsilon' \in]0, \infty[$ and $g \in L^1(\pi)$ with $g \ge \delta$ $[\pi]$ all such that, $\forall \vartheta \in \mathcal{H}$ and $\forall (z^{1:n})_n$ with $z^{1:n} \in D_{\varepsilon'}^n$ for any $n \in \mathbb{N}^*$,

 $\delta \leq \liminf_{n} f_{\vartheta}^{n}(z^{1:n}) \quad \text{and} \quad \limsup_{n} f_{\vartheta}^{n}(z^{1:n}) \leq g(\vartheta).$

Proposition

Under assumptions B0, B1, 1 and 2 of B2, B3, A1 and A2', the following occurs so far as $\varepsilon_{\star} < \varepsilon_0 \land \varepsilon'$ and for $\varepsilon \in]0, \varepsilon_0 \land \varepsilon' - \varepsilon_{\star}[$ and **P**-a.a. $(y^{1:n})_n$.

$$\begin{array}{l} 1 \quad \text{For any } \zeta > 0, \ \pi_{y^{1:n}}^{\varepsilon_{\star} + \varepsilon} \left[\mathcal{T}_{(\,\cdot\,)} \geq \varepsilon_{\star} + \zeta \right] \geq \frac{\delta}{\|g\|_{1}} \ \pi\left[\mathcal{T}_{(\,\cdot\,)} \geq \varepsilon_{\star} + \zeta \right]. \\ 2 \quad \pi_{y^{1:n}}^{\varepsilon_{\star} + \varepsilon} \left[\mathcal{H} \setminus \arg \min_{\mathcal{H}} \mathcal{T}_{(\,\cdot\,)} \right] \geq \frac{\delta}{\|g\|_{1}} \ \pi\left[\mathcal{H} \setminus \arg \min_{\mathcal{H}} \mathcal{T}_{(\,\cdot\,)} \right]. \end{array}$$

Marco Tarsia (Insubria - DiSAT) Mathematical Foundation of ABC 24 Se

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

-nshaeh

Thanks for your attention!