On the Mathematical Foundation of $A B C$
 A Robust Set for Estimating Mechanistic Network Models

Marco Tarsia
Daniele Cassani and Antonietta Mira

University of Insubria

Dipartimento di Scienza e Alta Tecnologia

COSTNET final meeting 2020

24 September 2020

Presentation plan

The four sections and the main references

1 A mathematical frame for ABC
2 A convergence result for $\varepsilon \downarrow 0$
3 Optimal transport theory in ABC
4 Some lower bounds for $n \rightarrow \infty$

- E. Bernton, P.E. Jacob, M. Gerber, C.P. Robert. Approximate Bayesian computation with the Wasserstein distance. J. R. Statist. Soc. B (2019). Vol. 81, Issue 2, pp. 235-269.
- S.A. Sisson, Y. Fan, M.A. Beaumont. Handbook of Approximate Bayesian Computation. Chapman \& Hall/CRC, Handbooks of Modern Statistical Methods, 2019.
■ C. Villani. Optimal Transport. Old and New. Springer, 2009.

A mathematical frame for $A B C$
Underlying probability space: $(\Omega, \mathcal{A}, \mathbf{P})$.
castmet

A mathematical frame for $A B C$
Underlying probability space: $(\Omega, \mathcal{A}, \mathbf{P})$. Dimensions: $d_{\mathcal{Y}}, d_{\mathcal{H}}, n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$.

돈든

A mathematical frame for $A B C$
Underlying probability space: $(\Omega, \mathcal{A}, \mathbf{P})$. Dimensions: $d_{\mathcal{Y}}, d_{\mathcal{H}}, n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$. Observations: $y^{1: n}(\omega) \equiv y^{1: n}=\left(y^{1}, \ldots, y^{n}\right) \in \mathcal{Y}^{n}, \omega \in \Omega$, where $\mathcal{Y} \subseteq \mathbb{R}^{d \mathcal{Y}}$ has metric $\varrho_{\mathcal{Y}}$.

Underlying probability space: $(\Omega, \mathcal{A}, \mathbf{P})$. Dimensions: $d_{\mathcal{y}}, d_{\mathcal{H}}, n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$. Observations: $y^{1: n}(\omega) \equiv y^{1: n}=\left(y^{1}, \ldots, y^{n}\right) \in \mathcal{Y}^{n}, \omega \in \Omega$, where $\mathcal{Y} \subseteq \mathbb{R}^{d \mathcal{Y}}$ has metric $\varrho_{\mathcal{Y}}$. Parameters: $\vartheta \in \mathcal{H}$, where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\varrho_{\mathcal{H}}$.

Underlying probability space: $(\Omega, \mathcal{A}, \mathbf{P})$. Dimensions: $d_{\mathcal{y}}, d_{\mathcal{H}}, n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$. Observations: $y^{1: n}(\omega) \equiv y^{1: n}=\left(y^{1}, \ldots, y^{n}\right) \in \mathcal{Y}^{n}, \omega \in \Omega$, where $\mathcal{Y} \subseteq \mathbb{R}^{d \mathcal{Y}}$ has metric $\varrho_{\mathcal{Y}}$. Parameters: $\vartheta \in \mathcal{H}$, where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\varrho_{\mathcal{H}}$. Prior: $\pi \in \mathscr{P}(\mathcal{H})$.

Underlying probability space: $(\Omega, \mathcal{A}, \mathbf{P})$. Dimensions: $d_{\mathcal{y}}, d_{\mathcal{H}}, n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$. Observations: $y^{1: n}(\omega) \equiv y^{1: n}=\left(y^{1}, \ldots, y^{n}\right) \in \mathcal{Y}^{n}, \omega \in \Omega$, where $\mathcal{Y} \subseteq \mathbb{R}^{d \mathcal{Y}}$ has metric $\varrho_{\mathcal{Y}}$. Parameters: $\vartheta \in \mathcal{H}$, where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\varrho_{\mathcal{H}}$. Prior: $\pi \in \mathscr{P}(\mathcal{H})$. Model: $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$, family in $\mathscr{P}\left(\mathcal{Y}^{n}\right)$.

Underlying probability space: $(\Omega, \mathcal{A}, \mathbf{P})$. Dimensions: $d_{\mathcal{Y}}, d_{\mathcal{H}}, n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$. Observations: $y^{1: n}(\omega) \equiv y^{1: n}=\left(y^{1}, \ldots, y^{n}\right) \in \mathcal{Y}^{n}, \omega \in \Omega$, where $\mathcal{Y} \subseteq \mathbb{R}^{d \mathcal{Y}}$ has metric $\varrho_{\mathcal{Y}}$. Parameters: $\vartheta \in \mathcal{H}$, where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\varrho_{\mathcal{H}}$. Prior: $\pi \in \mathscr{P}(\mathcal{H})$. Model: $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$, family in $\mathscr{P}\left(\mathcal{Y}^{n}\right)$.

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ-algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X) ; \mathscr{B}(X, Y)$ the class of the measurable functions $(X, \mathcal{B}(X)) \rightarrow(Y, \mathcal{B}(Y))$.

Underlying probability space: $(\Omega, \mathcal{A}, \mathbf{P})$. Dimensions: $d_{\mathcal{Y}}, d_{\mathcal{H}}, n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$. Observations: $y^{1: n}(\omega) \equiv y^{1: n}=\left(y^{1}, \ldots, y^{n}\right) \in \mathcal{Y}^{n}, \omega \in \Omega$, where $\mathcal{Y} \subseteq \mathbb{R}^{d \mathcal{Y}}$ has metric $\varrho_{\mathcal{Y}}$. Parameters: $\vartheta \in \mathcal{H}$, where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\varrho_{\mathcal{H}}$. Prior: $\pi \in \mathscr{P}(\mathcal{H})$. Model: $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$, family in $\mathscr{P}\left(\mathcal{Y}^{n}\right)$.

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ-algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X) ; \mathscr{B}(X, Y)$ the class of the measurable functions $(X, \mathcal{B}(X)) \rightarrow(Y, \mathcal{B}(Y))$. We write $\widetilde{\forall} \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H}[\pi]$ (for π-a.a. $\vartheta \in \mathcal{H})$.

Underlying probability space: $(\Omega, \mathcal{A}, \mathbf{P})$. Dimensions: $d_{\mathcal{y}}, d_{\mathcal{H}}, n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$. Observations: $y^{1: n}(\omega) \equiv y^{1: n}=\left(y^{1}, \ldots, y^{n}\right) \in \mathcal{Y}^{n}, \omega \in \Omega$, where $\mathcal{Y} \subseteq \mathbb{R}^{d \mathcal{Y}}$ has metric $\varrho_{\mathcal{Y}}$. Parameters: $\vartheta \in \mathcal{H}$, where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\varrho_{\mathcal{H}}$. Prior: $\pi \in \mathscr{P}(\mathcal{H})$. Model: $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$, family in $\mathscr{P}\left(\mathcal{Y}^{n}\right)$.

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ-algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X) ; \mathscr{B}(X, Y)$ the class of the measurable functions $(X, \mathcal{B}(X)) \rightarrow(Y, \mathcal{B}(Y))$. We write $\widetilde{\forall} \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H}[\pi]$ (for π-a.a. $\vartheta \in \mathcal{H})$.

Axiom [A0 - a]

The model $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\widetilde{\forall} \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1: n}=\left(z^{1}, \ldots, z^{n}\right) \in \mathcal{Y}^{n}$ with $z^{1: n} \sim \mu_{\vartheta}^{n}$ we desire.

Underlying probability space: $(\Omega, \mathcal{A}, \mathbf{P})$. Dimensions: $d_{\mathcal{y}}, d_{\mathcal{H}}, n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$. Observations: $y^{1: n}(\omega) \equiv y^{1: n}=\left(y^{1}, \ldots, y^{n}\right) \in \mathcal{Y}^{n}, \omega \in \Omega$, where $\mathcal{Y} \subseteq \mathbb{R}^{d \mathcal{Y}}$ has metric $\varrho_{\mathcal{Y}}$. Parameters: $\vartheta \in \mathcal{H}$, where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\varrho_{\mathcal{H}}$. Prior: $\pi \in \mathscr{P}(\mathcal{H})$. Model: $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$, family in $\mathscr{P}\left(\mathcal{Y}^{n}\right)$.

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ-algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X) ; \mathscr{B}(X, Y)$ the class of the measurable functions $(X, \mathcal{B}(X)) \rightarrow(Y, \mathcal{B}(Y))$. We write $\widetilde{\forall} \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H}[\pi]$ (for π-a.a. $\vartheta \in \mathcal{H})$.

Axiom [A0-a]

The model $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\widetilde{\forall} \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1: n}=\left(z^{1}, \ldots, z^{n}\right) \in \mathcal{Y}^{n}$ with $z^{1: n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1: n} \sim \mu_{\vartheta}^{n}$ in $\mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}$.

Underlying probability space: $(\Omega, \mathcal{A}, \mathbf{P})$. Dimensions: $d_{\mathcal{y}}, d_{\mathcal{H}}, n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$. Observations: $y^{1: n}(\omega) \equiv y^{1: n}=\left(y^{1}, \ldots, y^{n}\right) \in \mathcal{Y}^{n}, \omega \in \Omega$, where $\mathcal{Y} \subseteq \mathbb{R}^{d \mathcal{Y}}$ has metric $\varrho_{\mathcal{Y}}$. Parameters: $\vartheta \in \mathcal{H}$, where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\varrho_{\mathcal{H}}$. Prior: $\pi \in \mathscr{P}(\mathcal{H})$. Model: $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$, family in $\mathscr{P}\left(\mathcal{Y}^{n}\right)$.

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ-algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X) ; \mathscr{B}(X, Y)$ the class of the measurable functions $(X, \mathcal{B}(X)) \rightarrow(Y, \mathcal{B}(Y))$. We write $\widetilde{\forall} \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H}[\pi]$ (for π-a.a. $\vartheta \in \mathcal{H})$.

Axiom [A0-a]

The model $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\widetilde{\forall} \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1: n}=\left(z^{1}, \ldots, z^{n}\right) \in \mathcal{Y}^{n}$ with $z^{1: n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1: n} \sim \mu_{\vartheta}^{n}$ in $\mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}$. Deviation measure: \mathcal{D}, pseudo-metric on \mathcal{Y}^{n}.

Underlying probability space: $(\Omega, \mathcal{A}, \mathbf{P})$. Dimensions: $d_{\mathcal{y}}, d_{\mathcal{H}}, n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$. Observations: $y^{1: n}(\omega) \equiv y^{1: n}=\left(y^{1}, \ldots, y^{n}\right) \in \mathcal{Y}^{n}, \omega \in \Omega$, where $\mathcal{Y} \subseteq \mathbb{R}^{d \mathcal{Y}}$ has metric $\varrho_{\mathcal{Y}}$. Parameters: $\vartheta \in \mathcal{H}$, where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\varrho_{\mathcal{H}}$. Prior: $\pi \in \mathscr{P}(\mathcal{H})$. Model: $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$, family in $\mathscr{P}\left(\mathcal{Y}^{n}\right)$.

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ-algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X) ; \mathscr{B}(X, Y)$ the class of the measurable functions $(X, \mathcal{B}(X)) \rightarrow(Y, \mathcal{B}(Y))$. We write $\widetilde{\forall} \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H}[\pi]$ (for π-a.a. $\vartheta \in \mathcal{H})$.

Axiom [A0-a]

The model $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\widetilde{\forall} \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1: n}=\left(z^{1}, \ldots, z^{n}\right) \in \mathcal{Y}^{n}$ with $z^{1: n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1: n} \sim \mu_{\vartheta}^{n}$ in $\mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}$. Deviation measure: \mathcal{D}, pseudo-metric on \mathcal{Y}^{n}. $\widetilde{\forall} \vartheta \in \mathcal{H}, \mathcal{Y}_{\vartheta}^{n}:=\left\{z^{1: n} \in \mathcal{Y}^{n} \mid z^{1: n} \sim \mu_{\vartheta}^{n}\right\}$.

Underlying probability space: $(\Omega, \mathcal{A}, \mathbf{P})$. Dimensions: $d_{\mathcal{y}}, d_{\mathcal{H}}, n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$. Observations: $y^{1: n}(\omega) \equiv y^{1: n}=\left(y^{1}, \ldots, y^{n}\right) \in \mathcal{Y}^{n}, \omega \in \Omega$, where $\mathcal{Y} \subseteq \mathbb{R}^{d \mathcal{Y}}$ has metric $\varrho_{\mathcal{Y}}$. Parameters: $\vartheta \in \mathcal{H}$, where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\varrho_{\mathcal{H}}$. Prior: $\pi \in \mathscr{P}(\mathcal{H})$. Model: $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$, family in $\mathscr{P}\left(\mathcal{Y}^{n}\right)$.

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ-algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X) ; \mathscr{B}(X, Y)$ the class of the measurable functions $(X, \mathcal{B}(X)) \rightarrow(Y, \mathcal{B}(Y))$. We write $\widetilde{\forall} \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H}[\pi]$ (for π-a.a. $\vartheta \in \mathcal{H})$.

Axiom [A0-a]

The model $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\widetilde{\forall} \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1: n}=\left(z^{1}, \ldots, z^{n}\right) \in \mathcal{Y}^{n}$ with $z^{1: n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1: n} \sim \mu_{\vartheta}^{n}$ in $\mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}$. Deviation measure: \mathcal{D}, pseudo-metric on \mathcal{Y}^{n}. $\widetilde{\forall} \vartheta \in \mathcal{H}, \mathcal{Y}_{\vartheta}^{n}:=\left\{z^{1: n} \in \mathcal{Y}^{n} \mid z^{1: n} \sim \mu_{\vartheta}^{n}\right\} . \forall \varepsilon>0, D_{\varepsilon}^{n}:=\left\{z^{1: n} \in \mathcal{Y}^{n} \mid \mathcal{D}\left(y^{1: n}, z^{1: n}\right) \leq \varepsilon\right\}$.

Underlying probability space：$(\Omega, \mathcal{A}, \mathbf{P})$ ．Dimensions：$d_{\mathcal{y}}, d_{\mathcal{H}}, n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$ ．Observations： $y^{1: n}(\omega) \equiv y^{1: n}=\left(y^{1}, \ldots, y^{n}\right) \in \mathcal{Y}^{n}, \omega \in \Omega$ ，where $\mathcal{Y} \subseteq \mathbb{R}^{d \mathcal{Y}}$ has metric $\varrho_{\mathcal{Y}}$ ．Parameters：$\vartheta \in \mathcal{H}$ ， where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\varrho_{\mathcal{H}}$ ．Prior：$\pi \in \mathscr{P}(\mathcal{H})$ ．Model：$\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$ ，family in $\mathscr{P}\left(\mathcal{Y}^{n}\right)$ ．

Given topological spaces X, Y ，we denote by： $\mathcal{B}(X)$ the σ－algebra of the Borel subsets of X ； $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X) ; \mathscr{B}(X, Y)$ the class of the measurable functions $(X, \mathcal{B}(X)) \rightarrow(Y, \mathcal{B}(Y))$ ．We write $\widetilde{\forall} \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H}[\pi]$（for π－a．a．$\vartheta \in \mathcal{H})$ ．

Axiom［A0－a］

The model $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$ is generative meaning that，$\widetilde{\forall} \vartheta \in \mathcal{H}$ ，it＇s possible to generate how many $z^{1: n}=\left(z^{1}, \ldots, z^{n}\right) \in \mathcal{Y}^{n}$ with $z^{1: n} \sim \mu_{\vartheta}^{n}$ we desire．

Pseudo－observations：$z^{1: n} \sim \mu_{\vartheta}^{n}$ in $\mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}$ ．Deviation measure： \mathcal{D} ，pseudo－metric on \mathcal{Y}^{n} ．
$\widetilde{\forall} \vartheta \in \mathcal{H}, \mathcal{Y}_{\vartheta}^{n}:=\left\{z^{1: n} \in \mathcal{Y}^{n} \mid z^{1: n} \sim \mu_{\vartheta}^{n}\right\} . \forall \varepsilon>0, D_{\varepsilon}^{n}:=\left\{z^{1: n} \in \mathcal{Y}^{n} \mid \mathcal{D}\left(y^{1: n}, z^{1: n}\right) \leq \varepsilon\right\}$.
Axiom［A0－b］（under A0－a）
There exists $\varepsilon_{0}>0$ such that，for any $\left.\varepsilon \in\right] 0, \varepsilon_{0}[$ ，the two following conditions hold．

Underlying probability space：$(\Omega, \mathcal{A}, \mathbf{P})$ ．Dimensions：$d_{\mathcal{y}}, d_{\mathcal{H}}, n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$ ．Observations： $y^{1: n}(\omega) \equiv y^{1: n}=\left(y^{1}, \ldots, y^{n}\right) \in \mathcal{Y}^{n}, \omega \in \Omega$ ，where $\mathcal{Y} \subseteq \mathbb{R}^{d \mathcal{Y}}$ has metric $\varrho_{\mathcal{Y}}$ ．Parameters：$\vartheta \in \mathcal{H}$ ， where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\varrho_{\mathcal{H}}$ ．Prior：$\pi \in \mathscr{P}(\mathcal{H})$ ．Model：$\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$ ，family in $\mathscr{P}\left(\mathcal{Y}^{n}\right)$ ．

Given topological spaces X, Y ，we denote by： $\mathcal{B}(X)$ the σ－algebra of the Borel subsets of X ； $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X) ; \mathscr{B}(X, Y)$ the class of the measurable functions $(X, \mathcal{B}(X)) \rightarrow(Y, \mathcal{B}(Y))$ ．We write $\widetilde{\forall} \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H}[\pi]$（for π－a．a．$\vartheta \in \mathcal{H})$ ．

Axiom［A0－a］

The model $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$ is generative meaning that，$\tilde{\forall} \vartheta \in \mathcal{H}$ ，it＇s possible to generate how many $z^{1: n}=\left(z^{1}, \ldots, z^{n}\right) \in \mathcal{Y}^{n}$ with $z^{1: n} \sim \mu_{\vartheta}^{n}$ we desire．

Pseudo－observations：$z^{1: n} \sim \mu_{\vartheta}^{n}$ in $\mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}$ ．Deviation measure： \mathcal{D} ，pseudo－metric on \mathcal{Y}^{n} ．
$\widetilde{\forall} \vartheta \in \mathcal{H}, \mathcal{Y}_{\vartheta}^{n}:=\left\{z^{1: n} \in \mathcal{Y}^{n} \mid z^{1: n} \sim \mu_{\vartheta}^{n}\right\} . \forall \varepsilon>0, D_{\varepsilon}^{n}:=\left\{z^{1: n} \in \mathcal{Y}^{n} \mid \mathcal{D}\left(y^{1: n}, z^{1: n}\right) \leq \varepsilon\right\}$.
Axiom［A0－b］（under A0－a）
There exists $\varepsilon_{0}>0$ such that，for any $\left.\varepsilon \in\right] 0, \varepsilon_{0}[$ ，the two following conditions hold．
1 The function $\vartheta \mapsto \mu_{\vartheta}^{n}\left[D_{\varepsilon}^{n}\right]$ ，to be seen as defined π－a．s．，belongs to $\mathscr{B}(\mathcal{H},[0,1])$ ．

Underlying probability space: $(\Omega, \mathcal{A}, \mathbf{P})$. Dimensions: $d_{\mathcal{y}}, d_{\mathcal{H}}, n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$. Observations: $y^{1: n}(\omega) \equiv y^{1: n}=\left(y^{1}, \ldots, y^{n}\right) \in \mathcal{Y}^{n}, \omega \in \Omega$, where $\mathcal{Y} \subseteq \mathbb{R}^{d \mathcal{Y}}$ has metric $\varrho_{\mathcal{Y}}$. Parameters: $\vartheta \in \mathcal{H}$, where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\varrho_{\mathcal{H}}$. Prior: $\pi \in \mathscr{P}(\mathcal{H})$. Model: $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$, family in $\mathscr{P}\left(\mathcal{Y}^{n}\right)$.

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ-algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X) ; \mathscr{B}(X, Y)$ the class of the measurable functions $(X, \mathcal{B}(X)) \rightarrow(Y, \mathcal{B}(Y))$. We write $\widetilde{\forall} \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H}[\pi]$ (for π-a.a. $\vartheta \in \mathcal{H})$.

Axiom [A0 - a]

The model $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\tilde{\forall} \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1: n}=\left(z^{1}, \ldots, z^{n}\right) \in \mathcal{Y}^{n}$ with $z^{1: n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1: n} \sim \mu_{\vartheta}^{n}$ in $\mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}$. Deviation measure: \mathcal{D}, pseudo-metric on \mathcal{Y}^{n}.
$\widetilde{\forall} \vartheta \in \mathcal{H}, \mathcal{Y}_{\vartheta}^{n}:=\left\{z^{1: n} \in \mathcal{Y}^{n} \mid z^{1: n} \sim \mu_{\vartheta}^{n}\right\} . \forall \varepsilon>0, D_{\varepsilon}^{n}:=\left\{z^{1: n} \in \mathcal{Y}^{n} \mid \mathcal{D}\left(y^{1: n}, z^{1: n}\right) \leq \varepsilon\right\}$.
Axiom [A0-b] (under A0-a)
There exists $\varepsilon_{0}>0$ such that, for any $\left.\varepsilon \in\right] 0, \varepsilon_{0}[$, the two following conditions hold.
1 The function $\vartheta \mapsto \mu_{\vartheta}^{n}\left[D_{\varepsilon}^{n}\right]$, to be seen as defined π-a.s., belongs to $\mathscr{B}(\mathcal{H},[0,1])$.
$2 \int_{\mathcal{H}} \mu_{\vartheta}^{n}\left[D_{\varepsilon}^{n}\right] \pi(\mathrm{d} \vartheta)>0($ i.e. $\neq 0)$.

Underlying probability space: $(\Omega, \mathcal{A}, \mathbf{P})$. Dimensions: $d_{\mathcal{y}}, d_{\mathcal{H}}, n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$. Observations: $y^{1: n}(\omega) \equiv y^{1: n}=\left(y^{1}, \ldots, y^{n}\right) \in \mathcal{Y}^{n}, \omega \in \Omega$, where $\mathcal{Y} \subseteq \mathbb{R}^{d \mathcal{Y}}$ has metric $\varrho_{\mathcal{Y}}$. Parameters: $\vartheta \in \mathcal{H}$, where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\varrho_{\mathcal{H}}$. Prior: $\pi \in \mathscr{P}(\mathcal{H})$. Model: $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$, family in $\mathscr{P}\left(\mathcal{Y}^{n}\right)$.

Given topological spaces X, Y, we denote by: $\mathcal{B}(X)$ the σ-algebra of the Borel subsets of X; $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X) ; \mathscr{B}(X, Y)$ the class of the measurable functions $(X, \mathcal{B}(X)) \rightarrow(Y, \mathcal{B}(Y))$. We write $\widetilde{\forall} \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H}[\pi]$ (for π-a.a. $\vartheta \in \mathcal{H})$.

Axiom [A0 - a]

The model $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$ is generative meaning that, $\tilde{\forall} \vartheta \in \mathcal{H}$, it's possible to generate how many $z^{1: n}=\left(z^{1}, \ldots, z^{n}\right) \in \mathcal{Y}^{n}$ with $z^{1: n} \sim \mu_{\vartheta}^{n}$ we desire.

Pseudo-observations: $z^{1: n} \sim \mu_{\vartheta}^{n}$ in $\mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}$. Deviation measure: \mathcal{D}, pseudo-metric on \mathcal{Y}^{n}.
$\widetilde{\forall} \vartheta \in \mathcal{H}, \mathcal{Y}_{\vartheta}^{n}:=\left\{z^{1: n} \in \mathcal{Y}^{n} \mid z^{1: n} \sim \mu_{\vartheta}^{n}\right\} . \forall \varepsilon>0, D_{\varepsilon}^{n}:=\left\{z^{1: n} \in \mathcal{Y}^{n} \mid \mathcal{D}\left(y^{1: n}, z^{1: n}\right) \leq \varepsilon\right\}$.
Axiom [A0-b] (under A0-a)
There exists $\varepsilon_{0}>0$ such that, for any $\left.\varepsilon \in\right] 0, \varepsilon_{0}[$, the two following conditions hold.
1 The function $\vartheta \mapsto \mu_{\vartheta}^{n}\left[D_{\varepsilon}^{n}\right]$, to be seen as defined π-a.s., belongs to $\mathscr{B}(\mathcal{H},[0,1])$.
$2 \int_{\mathcal{H}} \mu_{\vartheta}^{n}\left[D_{\varepsilon}^{n}\right] \pi(\mathrm{d} \vartheta)>0($ i.e. $\neq 0)$.

Underlying probability space：$(\Omega, \mathcal{A}, \mathbf{P})$ ．Dimensions：$d_{\mathcal{y}}, d_{\mathcal{H}}, n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$ ．Observations： $y^{1: n}(\omega) \equiv y^{1: n}=\left(y^{1}, \ldots, y^{n}\right) \in \mathcal{Y}^{n}, \omega \in \Omega$ ，where $\mathcal{Y} \subseteq \mathbb{R}^{d \mathcal{Y}}$ has metric $\varrho_{\mathcal{Y}}$ ．Parameters：$\vartheta \in \mathcal{H}$ ， where $\mathcal{H} \subseteq \mathbb{R}^{d_{\mathcal{H}}}$ has metric $\varrho_{\mathcal{H}}$ ．Prior：$\pi \in \mathscr{P}(\mathcal{H})$ ．Model：$\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$ ，family in $\mathscr{P}\left(\mathcal{Y}^{n}\right)$ ．

Given topological spaces X, Y ，we denote by： $\mathcal{B}(X)$ the σ－algebra of the Borel subsets of X ； $\mathscr{P}(X)$ the class of the probability measures on $\mathcal{B}(X) ; \mathscr{B}(X, Y)$ the class of the measurable functions $(X, \mathcal{B}(X)) \rightarrow(Y, \mathcal{B}(Y))$ ．We write $\widetilde{\forall} \vartheta \in \mathcal{H}$ meaning $\forall \vartheta \in \mathcal{H}[\pi]$（for π－a．a．$\vartheta \in \mathcal{H})$ ．

Axiom［A0－a］

The model $\left\{\mu_{\vartheta}^{n}\right\}_{\vartheta \in \mathcal{H}}$ is generative meaning that，$\tilde{\forall} \vartheta \in \mathcal{H}$ ，it＇s possible to generate how many $z^{1: n}=\left(z^{1}, \ldots, z^{n}\right) \in \mathcal{Y}^{n}$ with $z^{1: n} \sim \mu_{\vartheta}^{n}$ we desire．

Pseudo－observations：$z^{1: n} \sim \mu_{\vartheta}^{n}$ in $\mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}$ ．Deviation measure： \mathcal{D} ，pseudo－metric on \mathcal{Y}^{n} ．
$\widetilde{\forall} \vartheta \in \mathcal{H}, \mathcal{Y}_{\vartheta}^{n}:=\left\{z^{1: n} \in \mathcal{Y}^{n} \mid z^{1: n} \sim \mu_{\vartheta}^{n}\right\} . \forall \varepsilon>0, D_{\varepsilon}^{n}:=\left\{z^{1: n} \in \mathcal{Y}^{n} \mid \mathcal{D}\left(y^{1: n}, z^{1: n}\right) \leq \varepsilon\right\}$.
Axiom［A0－b］（under A0－a）
There exists $\varepsilon_{0}>0$ such that，for any $\left.\varepsilon \in\right] 0, \varepsilon_{0}[$ ，the two following conditions hold．
1 The function $\vartheta \mapsto \mu_{\vartheta}^{n}\left[D_{\varepsilon}^{n}\right]$ ，to be seen as defined π－a．s．，belongs to $\mathscr{B}(\mathcal{H},[0,1])$ ．
$2 \int_{\mathcal{H}} \mu_{\vartheta}^{n}\left[D_{\varepsilon}^{n}\right] \pi(\mathrm{d} \vartheta)>0($ i．e．$\neq 0)$ ．
－Regarding the whole continuation，we assume that $\mathrm{AO}-\mathrm{a}$ and $\mathrm{AO}-\mathrm{b}$ worth．

A mathematical frame for $A B C$
ABC thresholds: any $\varepsilon \in] 0, \varepsilon_{0}[$.

돈ாㅌㄴ

A mathematical frame for $A B C$
$A B C$ thresholds: any $\varepsilon \in] 0, \varepsilon_{0}[$. $A B C$ rejection algorithms: hereunder.

A mathematical frame for $A B C$
$A B C$ thresholds: any $\varepsilon \in] 0, \varepsilon_{0}[$. $A B C$ rejection algorithms: hereunder.
(i) Choose $\varepsilon \in] 0, \varepsilon_{0}[$.

A mathematical frame for $A B C$
$A B C$ thresholds: any $\varepsilon \in] 0, \varepsilon_{0}[$. $A B C$ rejection algorithms: hereunder.
(i) Choose $\varepsilon \in] 0, \varepsilon_{0}\left[\right.$. (ii) Draw $\vartheta \in \mathcal{H}$ by π and $z^{1: n} \in \mathcal{Y}_{\vartheta}^{n}$.

돈ாேேட

A mathematical frame for $A B C$
$A B C$ thresholds: any $\varepsilon \in] 0, \varepsilon_{0}[$. $A B C$ rejection algorithms: hereunder.
(i) Choose $\varepsilon \in] 0, \varepsilon_{0}\left[\right.$. (ii) Draw $\vartheta \in \mathcal{H}$ by π and $z^{1: n} \in \mathcal{Y}_{\vartheta}^{n}$. (iii) Keep ϑ if, and only if, $z^{1: n} \in D_{\varepsilon}^{n}$.
$A B C$ thresholds: any $\varepsilon \in] 0, \varepsilon_{0}[$. $A B C$ rejection algorithms: hereunder.
(i) Choose $\varepsilon \in] 0, \varepsilon_{0}\left[\right.$. (ii) Draw $\vartheta \in \mathcal{H}$ by π and $z^{1: n} \in \mathcal{Y}_{\vartheta}^{n}$. (iii) Keep ϑ if, and only if, $z^{1: n} \in D_{\varepsilon}^{n}$. ABC posteriors: $\left.\pi_{y^{1: n}}^{\varepsilon} \ll \pi, \forall \varepsilon \in\right] 0, \varepsilon_{0}\left[\right.$, whose density is proportional to $\mu_{(.)}^{n}\left[D_{\varepsilon}^{n}\right]: \forall B \in \mathcal{B}(H)$,

$$
\pi_{y^{1: n}}^{\varepsilon}[B]=\frac{\int_{B} \mu_{\vartheta}^{n}\left[D_{\varepsilon}^{n}\right] \pi(\mathrm{d} \vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta^{\prime}}^{n}\left[D_{\varepsilon}^{n}\right] \pi\left(\mathrm{d} \vartheta^{\prime}\right)} .
$$

$A B C$ thresholds: any $\varepsilon \in] 0, \varepsilon_{0}[$. $A B C$ rejection algorithms: hereunder.
(i) Choose $\varepsilon \in] 0, \varepsilon_{0}\left[\right.$. (ii) Draw $\vartheta \in \mathcal{H}$ by π and $z^{1: n} \in \mathcal{Y}_{\vartheta}^{n}$. (iii) Keep ϑ if, and only if, $z^{1: n} \in D_{\varepsilon}^{n}$.

ABC posteriors: $\left.\pi_{y^{1: n}}^{\varepsilon} \ll \pi, \forall \varepsilon \in\right] 0, \varepsilon_{0}\left[\right.$, whose density is proportional to $\mu_{(.)}^{n}\left[D_{\varepsilon}^{n}\right]: \forall B \in \mathcal{B}(H)$,

$$
\pi_{y^{1: n}}^{\varepsilon}[B]=\frac{\int_{B} \mu_{\vartheta}^{n}\left[D_{\varepsilon}^{n}\right] \pi(\mathrm{d} \vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta^{\prime}}^{n}\left[D_{\varepsilon}^{n}\right] \pi\left(\mathrm{d} \vartheta^{\prime}\right)} .
$$

Axiom [A0-c]
For any $Y \in \mathcal{B}\left(\mathcal{Y}^{n}\right), \mu_{(\cdot)}^{n}[Y] \in \mathscr{B}(\mathcal{H},[0,1])$ (coherently w.r.t. A0-b).
$A B C$ thresholds: any $\varepsilon \in] 0, \varepsilon_{0}[$. $A B C$ rejection algorithms: hereunder.
(i) Choose $\varepsilon \in] 0, \varepsilon_{0}\left[\right.$. (ii) Draw $\vartheta \in \mathcal{H}$ by π and $z^{1: n} \in \mathcal{Y}_{\vartheta}^{n}$. (iii) Keep ϑ if, and only if, $z^{1: n} \in D_{\varepsilon}^{n}$.

ABC posteriors: $\left.\pi_{y^{1: n}}^{\varepsilon} \ll \pi, \forall \varepsilon \in\right] 0, \varepsilon_{0}\left[\right.$, whose density is proportional to $\mu_{(.)}^{n}\left[D_{\varepsilon}^{n}\right]: \forall B \in \mathcal{B}(H)$,

$$
\pi_{y^{1: n}}^{\varepsilon}[B]=\frac{\int_{B} \mu_{\vartheta}^{n}\left[D_{\varepsilon}^{n}\right] \pi(\mathrm{d} \vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta^{\prime}}^{n}\left[D_{\varepsilon}^{n}\right] \pi\left(\mathrm{d} \vartheta^{\prime}\right)} .
$$

Axiom [A0-c]

For any $Y \in \mathcal{B}\left(\mathcal{Y}^{n}\right), \mu_{(.)}^{n}[Y] \in \mathscr{B}(\mathcal{H},[0,1])$ (coherently w.r.t. A0-b).
Model for the true posterior (under $\mathrm{A} 0-\mathrm{c}$): for $Y \in \mathcal{B}\left(\mathcal{Y}^{n}\right)$ and $B \in \mathcal{B}(\mathcal{H})$ with $\pi[B]>0$,

$$
\mathrm{P}[Y \mid B] \doteq \frac{1}{\pi[B]} \int_{B} \mu_{\vartheta}^{n}[Y] \pi(\mathrm{d} \vartheta) .
$$

$A B C$ thresholds: any $\varepsilon \in] 0, \varepsilon_{0}[$. $A B C$ rejection algorithms: hereunder.
(i) Choose $\varepsilon \in] 0, \varepsilon_{0}\left[\right.$. (ii) Draw $\vartheta \in \mathcal{H}$ by π and $z^{1: n} \in \mathcal{Y}_{\vartheta}^{n}$. (iii) Keep ϑ if, and only if, $z^{1: n} \in D_{\varepsilon}^{n}$.

ABC posteriors: $\left.\pi_{y^{1: n}}^{\varepsilon} \ll \pi, \forall \varepsilon \in\right] 0, \varepsilon_{0}\left[\right.$, whose density is proportional to $\mu_{(\cdot)}^{n}\left[D_{\varepsilon}^{n}\right]: \forall B \in \mathcal{B}(H)$,

$$
\pi_{y^{1: n}}^{\varepsilon}[B]=\frac{\int_{B} \mu_{\vartheta}^{n}\left[D_{\varepsilon}^{n}\right] \pi(\mathrm{d} \vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta^{\prime}}^{n}\left[D_{\varepsilon}^{n}\right] \pi\left(\mathrm{d} \vartheta^{\prime}\right)} .
$$

Axiom [A0-c]

For any $Y \in \mathcal{B}\left(\mathcal{Y}^{n}\right), \mu_{(\cdot)}^{n}[Y] \in \mathscr{B}(\mathcal{H},[0,1])$ (coherently w.r.t. A0-b).
Model for the true posterior (under $\mathrm{A} 0-\mathrm{c}$): for $Y \in \mathcal{B}\left(\mathcal{Y}^{n}\right)$ and $B \in \mathcal{B}(\mathcal{H})$ with $\pi[B]>0$,

$$
\mathrm{P}[Y \mid B] \doteq \frac{1}{\pi[B]} \int_{B} \mu_{\vartheta}^{n}[Y] \pi(\mathrm{d} \vartheta) .
$$

The corresponding posterior: for $Y \in \mathcal{B}\left(\mathcal{Y}^{n}\right)$ and $B \in \mathcal{B}(\mathcal{H})$, whenever it makes sense,

$$
\pi[B \mid Y]=\frac{\int_{B} \mu_{\vartheta}^{n}[Y] \pi(\mathrm{d} \vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta^{\prime}}^{n}[Y] \pi\left(\mathrm{d} \vartheta^{\prime}\right)} .
$$

$A B C$ thresholds: any $\varepsilon \in] 0, \varepsilon_{0}[$. $A B C$ rejection algorithms: hereunder.
(i) Choose $\varepsilon \in] 0, \varepsilon_{0}\left[\right.$. (ii) Draw $\vartheta \in \mathcal{H}$ by π and $z^{1: n} \in \mathcal{Y}_{\vartheta}^{n}$. (iii) Keep ϑ if, and only if, $z^{1: n} \in D_{\varepsilon}^{n}$.

ABC posteriors: $\left.\pi_{y^{1: n}}^{\varepsilon} \ll \pi, \forall \varepsilon \in\right] 0, \varepsilon_{0}\left[\right.$, whose density is proportional to $\mu_{(\cdot)}^{n}\left[D_{\varepsilon}^{n}\right]: \forall B \in \mathcal{B}(H)$,

$$
\pi_{y^{1: n}}^{\varepsilon}[B]=\frac{\int_{B} \mu_{\vartheta}^{n}\left[D_{\varepsilon}^{n}\right] \pi(\mathrm{d} \vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta^{\prime}}^{n}\left[D_{\varepsilon}^{n}\right] \pi\left(\mathrm{d} \vartheta^{\prime}\right)} .
$$

Axiom [A0-c]

For any $Y \in \mathcal{B}\left(\mathcal{Y}^{n}\right), \mu_{(\cdot)}^{n}[Y] \in \mathscr{B}(\mathcal{H},[0,1])$ (coherently w.r.t. A0-b).
Model for the true posterior (under $\mathrm{A} 0-\mathrm{c}$): for $Y \in \mathcal{B}\left(\mathcal{Y}^{n}\right)$ and $B \in \mathcal{B}(\mathcal{H})$ with $\pi[B]>0$,

$$
\mathrm{P}[Y \mid B] \doteq \frac{1}{\pi[B]} \int_{B} \mu_{\vartheta}^{n}[Y] \pi(\mathrm{d} \vartheta) .
$$

The corresponding posterior: for $Y \in \mathcal{B}\left(\mathcal{Y}^{n}\right)$ and $B \in \mathcal{B}(\mathcal{H})$, whenever it makes sense,

$$
\pi[B \mid Y]=\frac{\int_{B} \mu_{\vartheta}^{n}[Y] \pi(\mathrm{d} \vartheta)}{\int_{\mathcal{H}} \mu_{\vartheta^{\prime}}^{n}[Y] \pi\left(\mathrm{d} \vartheta^{\prime}\right)} .
$$

Therefore, the true posterior would be

$$
\pi\left[\cdot \mid y^{1: n}\right]:=\pi\left[\cdot \mid\left\{y^{1: n}\right\}\right]
$$

A convergence result for $\varepsilon \downarrow 0$
We denote by $\mathrm{m}:=\mathrm{m}^{d^{\prime} \cdot n}$ the Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{d_{y} \cdot n}\right)$.
castmet

A convergence result for $\varepsilon \downarrow 0$
We denote by $\mathrm{m}:=\mathrm{m}^{d y \cdot n}$ the Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{d y \cdot n}\right)$.

Axiom [A1]

$\widetilde{\forall} \vartheta \in \mathcal{H}$, the two following conditions hold.

We denote by $\mathrm{m}:=\mathrm{m}^{d y \cdot n}$ the Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{d y \cdot n}\right)$.

Axiom [A1]

$\widetilde{\forall} \vartheta \in \mathcal{H}$, the two following conditions hold.
$1 \mu_{\vartheta}^{n} \ll \mathrm{~m}$ with $f_{\vartheta}^{n}:=\mathrm{d} \mu_{\vartheta}^{n} / \mathrm{dm}$ such that, $\widetilde{\forall} z^{1: n} \in \mathcal{Y}^{n}[\mathrm{~m}], f_{(\cdot)}^{n}\left(z^{1: n}\right) \in \mathscr{B}\left(\mathcal{H}, \mathbb{R}_{+}\right)$.

We denote by $\mathrm{m}:=\mathrm{m}^{d y \cdot n}$ the Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{d y \cdot n}\right)$.

Axiom [A1]

$\widetilde{\forall} \vartheta \in \mathcal{H}$, the two following conditions hold.
$1 \mu_{\vartheta}^{n} \ll \mathrm{~m}$ with $f_{\vartheta}^{n}:=\mathrm{d} \mu_{\vartheta}^{n} / \mathrm{dm}$ such that, $\widetilde{\forall} z^{1: n} \in \mathcal{Y}^{n}[\mathrm{~m}], f_{(\cdot)}^{n}\left(z^{1: n}\right) \in \mathscr{B}\left(\mathcal{H}, \mathbb{R}_{+}\right)$.
$2 f_{\vartheta}^{n}(\cdot)$ is continuous and $f_{(\cdot)}^{n}\left(y^{1: n}\right)$ is not π-a.s. identically zero.

We denote by $\mathrm{m}:=\mathrm{m}^{d y \cdot n}$ the Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{d y \cdot n}\right)$.

Axiom [A1]

$\widetilde{\forall} \vartheta \in \mathcal{H}$, the two following conditions hold.
$1 \mu_{\vartheta}^{n} \ll \mathrm{~m}$ with $f_{\vartheta}^{n}:=\mathrm{d} \mu_{\vartheta}^{n} / \mathrm{dm}$ such that, $\widetilde{\forall} z^{1: n} \in \mathcal{Y}^{n}[\mathrm{~m}], f_{(\cdot)}^{n}\left(z^{1: n}\right) \in \mathscr{B}\left(\mathcal{H}, \mathbb{R}_{+}\right)$.
$2 f_{\vartheta}^{n}(\cdot)$ is continuous and $f_{(\cdot)}^{n}\left(y^{1: n}\right)$ is not π-a.s. identically zero.

We denote by $\mathrm{m}:=\mathrm{m}^{d y \cdot n}$ the Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{d y \cdot n}\right)$.

Axiom [A1]

$\widetilde{\forall} \vartheta \in \mathcal{H}$, the two following conditions hold.
$1 \mu_{\vartheta}^{n} \ll \mathrm{~m}$ with $f_{\vartheta}^{n}:=\mathrm{d} \mu_{\vartheta}^{n} / \mathrm{dm}$ such that, $\widetilde{\forall} z^{1: n} \in \mathcal{Y}^{n}[\mathrm{~m}], f_{(\cdot)}^{n}\left(z^{1: n}\right) \in \mathscr{B}\left(\mathcal{H}, \mathbb{R}_{+}\right)$.
$2 f_{\vartheta}^{n}(\cdot)$ is continuous and $f_{(\cdot)}^{n}\left(y^{1: n}\right)$ is not π-a.s. identically zero.
1 of A1 implies A0-c while 2 of A1 ensures that $\int_{\mathcal{H}} f_{\vartheta}^{n}\left(y^{1: n}\right) \pi(\mathrm{d} \vartheta)>0$ (eventually ∞).

We denote by $\mathrm{m}:=\mathrm{m}^{d y \cdot n}$ the Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{d y \cdot n}\right)$.

Axiom [A1]

$\widetilde{\forall} \vartheta \in \mathcal{H}$, the two following conditions hold.
$1 \mu_{\vartheta}^{n} \ll \mathrm{~m}$ with $f_{\vartheta}^{n}:=\mathrm{d} \mu_{\vartheta}^{n} / \mathrm{dm}$ such that, $\widetilde{\forall} z^{1: n} \in \mathcal{Y}^{n}[\mathrm{~m}], f_{(\cdot)}^{n}\left(z^{1: n}\right) \in \mathscr{B}\left(\mathcal{H}, \mathbb{R}_{+}\right)$.
$2 f_{\vartheta}^{n}(\cdot)$ is continuous and $f_{(\cdot)}^{n}\left(y^{1: n}\right)$ is not π-a.s. identically zero.
1 of A1 implies A0-c while 2 of A1 ensures that $\int_{\mathcal{H}} f_{\vartheta}^{n}\left(y^{1: n}\right) \pi(\mathrm{d} \vartheta)>0$ (eventually ∞). Axiom [A2] (under A1)
There exist $\delta, \bar{\varepsilon} \in] 0, \infty\left[\right.$ and $g \in L^{1}(\pi)$ with $g \geq \delta[\pi]$ all such that, $\widetilde{\forall} \vartheta \in \mathcal{H}$,

$$
\delta \leq \sup _{z^{1: n} \in D_{\bar{E}}^{n}} f_{\vartheta}^{n}\left(z^{1: n}\right) \leq g(\vartheta)
$$

We denote by $\mathrm{m}:=\mathrm{m}^{d y^{\cdot n}}$ the Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{d y \cdot n}\right)$.

Axiom [A1]

$\widetilde{\forall} \vartheta \in \mathcal{H}$, the two following conditions hold.
$1 \mu_{\vartheta}^{n} \ll \mathrm{~m}$ with $f_{\vartheta}^{n}:=\mathrm{d} \mu_{\vartheta}^{n} / \mathrm{dm}$ such that, $\widetilde{\forall} z^{1: n} \in \mathcal{Y}^{n}[\mathrm{~m}], f_{(\cdot)}^{n}\left(z^{1: n}\right) \in \mathscr{B}\left(\mathcal{H}, \mathbb{R}_{+}\right)$.
$2 f_{\vartheta}^{n}(\cdot)$ is continuous and $f_{(\cdot)}^{n}\left(y^{1: n}\right)$ is not π-a.s. identically zero.
1 of A1 implies A0-c while 2 of A1 ensures that $\int_{\mathcal{H}} f_{\vartheta}^{n}\left(y^{1: n}\right) \pi(\mathrm{d} \vartheta)>0$ (eventually ∞).

Axiom [A2] (under A1)

There exist $\delta, \bar{\varepsilon} \in] 0, \infty\left[\right.$ and $g \in L^{1}(\pi)$ with $g \geq \delta[\pi]$ all such that, $\widetilde{\forall} \vartheta \in \mathcal{H}$,

$$
\delta \leq \sup _{z^{1: n} \in D_{\bar{E}}^{n}} f_{\vartheta}^{n}\left(z^{1: n}\right) \leq g(\vartheta)
$$

- A2 would imply 2 of $\mathrm{A} 0-\mathrm{b}$ employing any $\left.\left.\varepsilon_{0} \in\right] 0, \bar{\varepsilon}\right]$.

We denote by $\mathrm{m}:=\mathrm{m}^{d y^{\cdot n}}$ the Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{d y \cdot n}\right)$.

Axiom [A1]

$\widetilde{\forall} \vartheta \in \mathcal{H}$, the two following conditions hold.
$1 \mu_{\vartheta}^{n} \ll \mathrm{~m}$ with $f_{\vartheta}^{n}:=\mathrm{d} \mu_{\vartheta}^{n} / \mathrm{dm}$ such that, $\widetilde{\forall} z^{1: n} \in \mathcal{Y}^{n}[\mathrm{~m}], f_{(\cdot)}^{n}\left(z^{1: n}\right) \in \mathscr{B}\left(\mathcal{H}, \mathbb{R}_{+}\right)$.
$2 f_{\vartheta}^{n}(\cdot)$ is continuous and $f_{(\cdot)}^{n}\left(y^{1: n}\right)$ is not π-a.s. identically zero.
1 of A1 implies A0-c while 2 of A1 ensures that $\int_{\mathcal{H}} f_{\vartheta}^{n}\left(y^{1: n}\right) \pi(\mathrm{d} \vartheta)>0$ (eventually ∞).

Axiom [A2] (under A1)

There exist $\delta, \bar{\varepsilon} \in] 0, \infty\left[\right.$ and $g \in L^{1}(\pi)$ with $g \geq \delta[\pi]$ all such that, $\widetilde{\forall} \vartheta \in \mathcal{H}$,

$$
\delta \leq \sup _{z^{1: n} \in D_{\bar{E}}^{n}} f_{\vartheta}^{n}\left(z^{1: n}\right) \leq g(\vartheta)
$$

- A2 would imply 2 of A0-b employing any $\left.\left.\varepsilon_{0} \in\right] 0, \bar{\varepsilon}\right]$.
- A2 implies $f_{(\cdot)}^{n}\left(y^{1: n}\right) \in L^{1}(\pi)$ with $L^{1}(\pi)$-norm lower or equal than $\|g\|_{1}:=\|g\|_{L^{1}(\pi)}$.

We denote by $\mathrm{m}:=\mathrm{m}^{d^{\prime} \cdot n}$ the Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{d_{y} \cdot n}\right)$.

Axiom [A1]

$\widetilde{\forall} \vartheta \in \mathcal{H}$, the two following conditions hold.
$1 \mu_{\vartheta}^{n} \ll \mathrm{~m}$ with $f_{\vartheta}^{n}:=\mathrm{d} \mu_{\vartheta}^{n} / \mathrm{dm}$ such that, $\widetilde{\forall} z^{1: n} \in \mathcal{Y}^{n}[\mathrm{~m}], f_{(\cdot)}^{n}\left(z^{1: n}\right) \in \mathscr{B}\left(\mathcal{H}, \mathbb{R}_{+}\right)$.
$2 f_{\vartheta}^{n}(\cdot)$ is continuous and $f_{(\cdot)}^{n}\left(y^{1: n}\right)$ is not π-a.s. identically zero.
1 of A1 implies A0-c while 2 of A1 ensures that $\int_{\mathcal{H}} f_{\vartheta}^{n}\left(y^{1: n}\right) \pi(\mathrm{d} \vartheta)>0$ (eventually ∞).

Axiom [A2] (under A1)

There exist $\delta, \bar{\varepsilon} \in] 0, \infty\left[\right.$ and $g \in L^{1}(\pi)$ with $g \geq \delta[\pi]$ all such that, $\widetilde{\forall} \vartheta \in \mathcal{H}$,

$$
\delta \leq \sup _{z^{1: n} \in D_{\bar{\varepsilon}}^{n}} f_{\vartheta}^{n}\left(z^{1: n}\right) \leq g(\vartheta)
$$

- A2 would imply 2 of A0-b employing any $\left.\left.\varepsilon_{0} \in\right] 0, \bar{\varepsilon}\right]$.
- A2 implies $f_{(\cdot)}^{n}\left(y^{1: n}\right) \in L^{1}(\pi)$ with $L^{1}(\pi)$-norm lower or equal than $\|g\|_{1}:=\|g\|_{L^{1}(\pi)}$.
- Even the following generalization of A2 would work.

We denote by $\mathrm{m}:=\mathrm{m}^{d^{\prime} \cdot n}$ the Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{d_{y} \cdot n}\right)$.

Axiom [A1]

$\widetilde{\forall} \vartheta \in \mathcal{H}$, the two following conditions hold.
$1 \mu_{\vartheta}^{n} \ll \mathrm{~m}$ with $f_{\vartheta}^{n}:=\mathrm{d} \mu_{\vartheta}^{n} / \mathrm{dm}$ such that, $\widetilde{\forall} z^{1: n} \in \mathcal{Y}^{n}[\mathrm{~m}], f_{(\cdot)}^{n}\left(z^{1: n}\right) \in \mathscr{B}\left(\mathcal{H}, \mathbb{R}_{+}\right)$.
$2 f_{\vartheta}^{n}(\cdot)$ is continuous and $f_{(\cdot)}^{n}\left(y^{1: n}\right)$ is not π-a.s. identically zero.
1 of A1 implies A0-c while 2 of A1 ensures that $\int_{\mathcal{H}} f_{\vartheta}^{n}\left(y^{1: n}\right) \pi(\mathrm{d} \vartheta)>0$ (eventually ∞).

Axiom [A2] (under A1)

There exist $\delta, \bar{\varepsilon} \in] 0, \infty\left[\right.$ and $g \in L^{1}(\pi)$ with $g \geq \delta[\pi]$ all such that, $\widetilde{\forall} \vartheta \in \mathcal{H}$,

$$
\delta \leq \sup _{z^{1: n} \in D_{\bar{\varepsilon}}^{n}} f_{\vartheta}^{n}\left(z^{1: n}\right) \leq g(\vartheta)
$$

- A2 would imply 2 of A0-b employing any $\left.\left.\varepsilon_{0} \in\right] 0, \bar{\varepsilon}\right]$.
- A2 implies $f_{(\cdot)}^{n}\left(y^{1: n}\right) \in L^{1}(\pi)$ with $L^{1}(\pi)$-norm lower or equal than $\|g\|_{1}:=\|g\|_{L^{1}(\pi)}$.
- Even the following generalization of A2 would work.

We denote by $\mathrm{m}:=\mathrm{m}^{d y^{\cdot n}}$ the Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{d y \cdot n}\right)$.

Axiom [A1]

$\widetilde{\forall} \vartheta \in \mathcal{H}$, the two following conditions hold.
$1 \mu_{\vartheta}^{n} \ll \mathrm{~m}$ with $f_{\vartheta}^{n}:=\mathrm{d} \mu_{\vartheta}^{n} / \mathrm{dm}$ such that, $\widetilde{\forall} z^{1: n} \in \mathcal{Y}^{n}[\mathrm{~m}], f_{(\cdot)}^{n}\left(z^{1: n}\right) \in \mathscr{B}\left(\mathcal{H}, \mathbb{R}_{+}\right)$.
$2 f_{\vartheta}^{n}(\cdot)$ is continuous and $f_{(\cdot)}^{n}\left(y^{1: n}\right)$ is not π-a.s. identically zero.
1 of A1 implies A0-c while 2 of A1 ensures that $\int_{\mathcal{H}} f_{\vartheta}^{n}\left(y^{1: n}\right) \pi(\mathrm{d} \vartheta)>0$ (eventually ∞).

Axiom [A2] (under A1)

There exist $\delta, \bar{\varepsilon} \in] 0, \infty\left[\right.$ and $g \in L^{1}(\pi)$ with $g \geq \delta[\pi]$ all such that, $\widetilde{\forall} \vartheta \in \mathcal{H}$,

$$
\delta \leq \sup _{z^{1: n} \in D_{\bar{E}}^{n}} f_{\vartheta}^{n}\left(z^{1: n}\right) \leq g(\vartheta)
$$

- A2 would imply 2 of A0-b employing any $\left.\left.\varepsilon_{0} \in\right] 0, \bar{\varepsilon}\right]$.
- A2 implies $f_{(\cdot)}^{n}\left(y^{1: n}\right) \in L^{1}(\pi)$ with $L^{1}(\pi)$-norm lower or equal than $\|g\|_{1}:=\|g\|_{L^{1}(\pi)}$.
- Even the following generalization of A2 would work.

Axiom [$\widetilde{\text { A2 }}$] (under A1) There exist $g \in L^{1}(\pi)$ with $g>0[\pi]$ and $\left.\tilde{\varepsilon} \in\right] 0, \infty[$ such that, for any $\varepsilon \in] 0, \tilde{\varepsilon}\left[\right.$, there exists $\left.\delta_{\varepsilon} \in\right] 0, \infty[$ such that, $\widetilde{\forall} \vartheta \in \mathcal{H}$,

$$
\delta_{\varepsilon} \leq \sup _{z^{1: n} \in D_{\varepsilon}^{n}} f_{\vartheta}^{n}\left(z^{1: n}\right) \leq g(\vartheta)
$$

Axiom [A3] (under A1)
$\widetilde{\forall} \vartheta \in \mathcal{H}, \mathcal{D}\left(y^{1: n}, \cdot\right)^{-1}(0) \subseteq f_{\vartheta}^{n}(\cdot)^{-1}\left(f_{\vartheta}^{n}\left(y^{1: n}\right)\right)$.

In particular, if \mathcal{D} is an actual metric, then $A 3$ trivially holds

Proposition
Inder assumptions A1, A2 and A3, the three following conditions hold.

A convergence result for $\varepsilon \downarrow 0$

Axiom [A3] (under A1)
$\widetilde{\forall} \vartheta \in \mathcal{H}, \mathcal{D}\left(y^{1: n}, \cdot\right)^{-1}(0) \subseteq f_{\vartheta}^{n}(\cdot)^{-1}\left(f_{\vartheta}^{n}\left(y^{1: n}\right)\right)$.
In particular, if \mathcal{D} is an actual metric, then A 3 trivially holds.
Proposition
under assumptions A1, A2 and A3, the three following conditions hold.

Axiom [A3] (under A1)
$\widetilde{\forall} \vartheta \in \mathcal{H}, \mathcal{D}\left(y^{1: n}, \cdot\right)^{-1}(0) \subseteq f_{\vartheta}^{n}(\cdot)^{-1}\left(f_{\vartheta}^{n}\left(y^{1: n}\right)\right)$.
In particular, if \mathcal{D} is an actual metric, then A 3 trivially holds.

Proposition

Under assumptions A1, A2 and A3, the three following conditions hold.

Axiom［A3］（under A1）
$\widetilde{\forall} \vartheta \in \mathcal{H}, \mathcal{D}\left(y^{1: n}, \cdot\right)^{-1}(0) \subseteq f_{\vartheta}^{n}(\cdot)^{-1}\left(f_{\vartheta}^{n}\left(y^{1: n}\right)\right)$.
In particular，if \mathcal{D} is an actual metric，then A 3 trivially holds．

Proposition

Under assumptions A1，A2 and A3，the three following conditions hold．
1 The $A B C$ rejection algorithm and the $A B C$ posterior are well defined for any $\varepsilon \in] 0, \varepsilon_{0} \vee \bar{\varepsilon}[$ ．

Axiom [A3] (under A1)
$\widetilde{\forall} \vartheta \in \mathcal{H}, \mathcal{D}\left(y^{1: n}, \cdot\right)^{-1}(0) \subseteq f_{\vartheta}^{n}(\cdot)^{-1}\left(f_{\vartheta}^{n}\left(y^{1: n}\right)\right)$.
In particular, if \mathcal{D} is an actual metric, then A 3 trivially holds.

Proposition

Under assumptions A1, A2 and A3, the three following conditions hold.
1 The $A B C$ rejection algorithm and the $A B C$ posterior are well defined for any $\varepsilon \in] 0, \varepsilon_{0} \vee \bar{\varepsilon}[$.
2 The true posterior $\pi\left[\cdot \mid y^{1: n}\right]$ makes sense and takes the following expression: $\forall B \in \mathcal{B}(\mathcal{H})$,

$$
\pi\left[B \mid y^{1: n}\right]=\frac{\int_{B} f_{\vartheta}^{n}\left(y^{1: n}\right) \pi(\mathrm{d} \vartheta)}{\int_{\mathcal{H}} f_{\vartheta^{\prime}}^{n}\left(y^{1: n}\right) \pi\left(\mathrm{d} \vartheta^{\prime}\right)}
$$

\square

Axiom [A3] (under A1)

$\widetilde{\forall} \vartheta \in \mathcal{H}, \mathcal{D}\left(y^{1: n}, \cdot\right)^{-1}(0) \subseteq f_{\vartheta}^{n}(\cdot)^{-1}\left(f_{\vartheta}^{n}\left(y^{1: n}\right)\right)$.
In particular, if \mathcal{D} is an actual metric, then A 3 trivially holds.

Proposition

Under assumptions A1, A2 and A3, the three following conditions hold.
1 The $A B C$ rejection algorithm and the $A B C$ posterior are well defined for any $\varepsilon \in] 0, \varepsilon_{0} \vee \bar{\varepsilon}[$.
2 The true posterior $\pi\left[\cdot \mid y^{1: n}\right]$ makes sense and takes the following expression: $\forall B \in \mathcal{B}(\mathcal{H})$,

$$
\pi\left[B \mid y^{1: n}\right]=\frac{\int_{B} f_{\vartheta}^{n}\left(y^{1: n}\right) \pi(\mathrm{d} \vartheta)}{\int_{\mathcal{H}} f_{\vartheta^{\prime}}^{n}\left(y^{1: n}\right) \pi\left(\mathrm{d} \vartheta^{\prime}\right)}
$$

3 The $A B C$ posterior strongly converges to the true posterior as $\varepsilon \downarrow 0: \forall B \in \mathcal{B}(\mathcal{H})$,

$$
\pi_{y^{1: n}}^{\varepsilon}[B] \rightarrow \pi\left[B \mid y^{1: n}\right] \quad \text { as } \varepsilon \downarrow 0 .
$$

Let's visualize $(\mathcal{Y}, \varrho \mathcal{Y})$ as a separable and complete metric space, thus also a Radon space, i.e. any element in $\mathscr{P}(\mathcal{Y})$ is a Radon probability measure (outer regular on Borel subsets and inner regular on open subsets); and let's choose an unit cost function c: $\mathcal{Y} \times \mathcal{Y} \rightarrow[0, \infty]$ which is lower semicontinuous (so Borel measurable) and a parameter $p \in[1, \infty[$ of summability.

Let's visualize $(\mathcal{Y}, \varrho \mathcal{Y})$ as a separable and complete metric space, thus also a Radon space, i.e. any element in $\mathscr{P}(\mathcal{Y})$ is a Radon probability measure (outer regular on Borel subsets and inner regular on open subsets); and let's choose an unit cost function c: $\mathcal{Y} \times \mathcal{Y} \rightarrow[0, \infty]$ which is lower semicontinuous (so Borel measurable) and a parameter $p \in[1, \infty[$ of summability.

We denote by $\mathscr{P}_{p}(\mathcal{Y})$ the subclass of $\mathscr{P}(\mathcal{Y})$ whose elements have finite p-th moment.

Let's visualize $(\mathcal{Y}, \varrho \mathcal{Y})$ as a separable and complete metric space, thus also a Radon space, i.e. any element in $\mathscr{P}(\mathcal{Y})$ is a Radon probability measure (outer regular on Borel subsets and inner regular on open subsets); and let's choose an unit cost function c: $\mathcal{Y} \times \mathcal{Y} \rightarrow[0, \infty]$ which is lower semicontinuous (so Borel measurable) and a parameter $p \in[1, \infty[$ of summability.

We denote by $\mathscr{P}_{p}(\mathcal{Y})$ the subclass of $\mathscr{P}(\mathcal{Y})$ whose elements have finite p-th moment.
Kantorovich's formulation. For $\mu, \nu \in \mathscr{P}_{p}(\mathcal{Y})$, consider the subclass $\Gamma(\mu, \nu)$ of $\mathscr{P}(\mathcal{Y} \times \mathcal{Y})$ whose elements γ are the couplings with marginals μ and ν.

Let's visualize $(\mathcal{Y}, \varrho \mathcal{Y})$ as a separable and complete metric space, thus also a Radon space, i.e. any element in $\mathscr{P}(\mathcal{Y})$ is a Radon probability measure (outer regular on Borel subsets and inner regular on open subsets); and let's choose an unit cost function $c: \mathcal{Y} \times \mathcal{Y} \rightarrow[0, \infty]$ which is lower semicontinuous (so Borel measurable) and a parameter $p \in[1, \infty[$ of summability.

We denote by $\mathscr{P}_{p}(\mathcal{Y})$ the subclass of $\mathscr{P}(\mathcal{Y})$ whose elements have finite p-th moment.
Kantorovich's formulation. For $\mu, \nu \in \mathscr{P}_{p}(\mathcal{Y})$, consider the subclass $\Gamma(\mu, \nu)$ of $\mathscr{P}(\mathcal{Y} \times \mathcal{Y})$ whose elements γ are the couplings with marginals μ and ν. Then the Kantorovich's formulation of the optimal transport problem related to $(\mathcal{Y}, \varrho \mathcal{Y}), c$ and p is

$$
\mathcal{K}(\mu, \nu) \doteq \inf _{\gamma \in \Gamma(\mu, \nu)} \int_{\mathcal{Y} \times \mathcal{Y}} c\left(y, y^{\prime}\right) \mathrm{d} \gamma\left(y, y^{\prime}\right)
$$

Let's visualize $(\mathcal{Y}, \varrho \mathcal{Y})$ as a separable and complete metric space, thus also a Radon space, i.e. any element in $\mathscr{P}(\mathcal{Y})$ is a Radon probability measure (outer regular on Borel subsets and inner regular on open subsets); and let's choose an unit cost function c: $\mathcal{Y} \times \mathcal{Y} \rightarrow[0, \infty]$ which is lower semicontinuous (so Borel measurable) and a parameter $p \in[1, \infty[$ of summability.

We denote by $\mathscr{P}_{p}(\mathcal{Y})$ the subclass of $\mathscr{P}(\mathcal{Y})$ whose elements have finite p-th moment.
Kantorovich's formulation. For $\mu, \nu \in \mathscr{P}_{p}(\mathcal{Y})$, consider the subclass $\Gamma(\mu, \nu)$ of $\mathscr{P}(\mathcal{Y} \times \mathcal{Y})$ whose elements γ are the couplings with marginals μ and ν. Then the Kantorovich's formulation of the optimal transport problem related to $(\mathcal{Y}, \varrho \mathcal{Y}), c$ and p is

$$
\mathcal{K}(\mu, \nu) \doteq \inf _{\gamma \in \Gamma(\mu, \nu)} \int_{\mathcal{Y} \times \mathcal{Y}} c\left(y, y^{\prime}\right) \mathrm{d} \gamma\left(y, y^{\prime}\right) .
$$

It can be shown that there exists a minimizer $\gamma^{*} \in \Gamma(\mu, \nu)$ for such a problem which could be determined by means of gradient descent algorithms.
\qquad

Let's visualize $(\mathcal{Y}, \varrho \mathcal{Y})$ as a separable and complete metric space, thus also a Radon space, i.e. any element in $\mathscr{P}(\mathcal{Y})$ is a Radon probability measure (outer regular on Borel subsets and inner regular on open subsets); and let's choose an unit cost function $c: \mathcal{Y} \times \mathcal{Y} \rightarrow[0, \infty]$ which is lower semicontinuous (so Borel measurable) and a parameter $p \in[1, \infty[$ of summability.

We denote by $\mathscr{P}_{p}(\mathcal{Y})$ the subclass of $\mathscr{P}(\mathcal{Y})$ whose elements have finite p-th moment.
Kantorovich's formulation. For $\mu, \nu \in \mathscr{P}_{p}(\mathcal{Y})$, consider the subclass $\Gamma(\mu, \nu)$ of $\mathscr{P}(\mathcal{Y} \times \mathcal{Y})$ whose elements γ are the couplings with marginals μ and ν. Then the Kantorovich's formulation of the optimal transport problem related to $(\mathcal{Y}, \varrho \mathcal{Y}), c$ and p is

$$
\mathcal{K}(\mu, \nu) \doteq \inf _{\gamma \in \Gamma(\mu, \nu)} \int_{\mathcal{Y} \times \mathcal{Y}} c\left(y, y^{\prime}\right) \mathrm{d} \gamma\left(y, y^{\prime}\right) .
$$

It can be shown that there exists a minimizer $\gamma^{*} \in \Gamma(\mu, \nu)$ for such a problem which could be determined by means of gradient descent algorithms.

Example

For $c=(\varrho \mathcal{Y})^{p}, \mathcal{K}$ coincides with the p-power of the Wasserstein distance: $\mathcal{K}=\mathcal{W}_{p}^{p}$.

Monge's formulation. For $\mu, \nu \in \mathscr{P}_{p}(\mathcal{Y})$, consider the subclass $\mathrm{T}(\mu, \nu)$ of $\mathscr{B}(\mathcal{Y}):=\mathscr{B}(\mathcal{Y}, \mathcal{Y})$ whose elements T satisfy $T_{\#} \mu=\nu$ (push-forward or image measure of μ through T).

Monge's formulation. For $\mu, \nu \in \mathscr{P}_{p}(\mathcal{Y})$, consider the subclass $\mathrm{T}(\mu, \nu)$ of $\mathscr{B}(\mathcal{Y}):=\mathscr{B}(\mathcal{Y}, \mathcal{Y})$ whose elements T satisfy $T_{\#} \mu=\nu$ (push-forward or image measure of μ through T). Then, at least when μ and ν are both atomic (not diffuse) or otherwise when μ is not atomic (diffuse), the Monge's formulation of the optimal transport problem related to $\left(\mathcal{Y}, \varrho_{\mathcal{Y}}\right), c$ and p is

$$
\mathcal{M}(\mu, \nu) \doteq \inf _{T \in \mathbf{T}(\mu, \nu)} \int_{\mathcal{Y}} c(y, T(y)) \mu(\mathrm{d} y) .
$$

Monge's formulation. For $\mu, \nu \in \mathscr{P}_{p}(\mathcal{Y})$, consider the subclass $\mathrm{T}(\mu, \nu)$ of $\mathscr{B}(\mathcal{Y}):=\mathscr{B}(\mathcal{Y}, \mathcal{Y})$ whose elements T satisfy $T_{\#} \mu=\nu$ (push-forward or image measure of μ through T). Then, at least when μ and ν are both atomic (not diffuse) or otherwise when μ is not atomic (diffuse), the Monge's formulation of the optimal transport problem related to $\left(\mathcal{Y}, \varrho_{\mathcal{Y}}\right), c$ and p is

$$
\mathcal{M}(\mu, \nu) \doteq \inf _{T \in \mathbf{T}(\mu, \nu)} \int_{\mathcal{Y}} c(y, T(y)) \mu(\mathrm{d} y) .
$$

Example

Assume $d_{\mathcal{Y}}=1$ and $\mathcal{Y}=\mathbb{R}$ with $\varrho_{\mathcal{Y}}$ equal to the Euclidean metric.

Monge's formulation. For $\mu, \nu \in \mathscr{P}_{p}(\mathcal{Y})$, consider the subclass $\mathrm{T}(\mu, \nu)$ of $\mathscr{B}(\mathcal{Y}):=\mathscr{B}(\mathcal{Y}, \mathcal{Y})$ whose elements T satisfy $T_{\#} \mu=\nu$ (push-forward or image measure of μ through T). Then, at least when μ and ν are both atomic (not diffuse) or otherwise when μ is not atomic (diffuse), the Monge's formulation of the optimal transport problem related to $\left(\mathcal{Y}, \varrho_{\mathcal{Y}}\right), c$ and p is

$$
\mathcal{M}(\mu, \nu) \doteq \inf _{T \in \mathbf{T}(\mu, \nu)} \int_{\mathcal{Y}} c(y, T(y)) \mu(\mathrm{d} y) .
$$

Example

Assume $d_{\mathcal{Y}}=1$ and $\mathcal{Y}=\mathbb{R}$ with $\varrho_{\mathcal{Y}}$ equal to the Euclidean metric. If there exists a function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ which is convex and such that $c\left(y, y^{\prime}\right)=\varphi\left(y-y^{\prime}\right), y, y^{\prime} \in \mathbb{R}$, then, for $\mu, \nu \in \mathscr{P}_{p}(\mathbb{R})$ with μ not atomic, the function $T^{*}:=F_{\nu}^{-1} \circ F_{\mu} \in \mathrm{T}(\mu, \nu)$ is an optimal transport map w.r.t. the Monge's formulation (the unique if φ is strictly convex) and the following identity holds:

$$
\mathcal{M}(\mu, \nu) \equiv \int_{\mathbb{R}} \varphi\left(y-T^{*}(y)\right) \mu(\mathrm{d} y)=\int_{0}^{1} \varphi\left(F_{\mu}^{-1}(t)-F_{\nu}^{-1}(t)\right) \mathrm{d} t
$$

Monge's formulation. For $\mu, \nu \in \mathscr{P}_{p}(\mathcal{Y})$, consider the subclass $\mathrm{T}(\mu, \nu)$ of $\mathscr{B}(\mathcal{Y}):=\mathscr{B}(\mathcal{Y}, \mathcal{Y})$ whose elements T satisfy $T_{\#} \mu=\nu$ (push-forward or image measure of μ through T). Then, at least when μ and ν are both atomic (not diffuse) or otherwise when μ is not atomic (diffuse), the Monge's formulation of the optimal transport problem related to $\left(\mathcal{Y}, \varrho_{\mathcal{Y}}\right), c$ and p is

$$
\mathcal{M}(\mu, \nu) \doteq \inf _{T \in \mathbf{T}(\mu, \nu)} \int_{\mathcal{Y}} c(y, T(y)) \mu(\mathrm{d} y) .
$$

Example

Assume $d_{\mathcal{Y}}=1$ and $\mathcal{Y}=\mathbb{R}$ with $\varrho_{\mathcal{Y}}$ equal to the Euclidean metric. If there exists a function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ which is convex and such that $c\left(y, y^{\prime}\right)=\varphi\left(y-y^{\prime}\right), y, y^{\prime} \in \mathbb{R}$, then, for $\mu, \nu \in \mathscr{P}_{p}(\mathbb{R})$ with μ not atomic, the function $T^{*}:=F_{\nu}^{-1} \circ F_{\mu} \in \mathrm{T}(\mu, \nu)$ is an optimal transport map w.r.t. the Monge's formulation (the unique if φ is strictly convex) and the following identity holds:

$$
\mathcal{M}(\mu, \nu) \equiv \int_{\mathbb{R}} \varphi\left(y-T^{*}(y)\right) \mu(\mathrm{d} y)=\int_{0}^{1} \varphi\left(F_{\mu}^{-1}(t)-F_{\nu}^{-1}(t)\right) \mathrm{d} t
$$

Radon's metric. For any $\mu, \nu \in \mathscr{P}_{p}(\mathcal{Y}), \varrho_{\mathcal{R}}(\mu, \nu) \doteq \sup _{h \in C^{0}(\mathcal{Y},[-1,1])} \int_{\mathcal{Y}} h(y)(\mu-\nu)(\mathrm{d} y)$ defines a metric on $\mathscr{P}_{p}(\mathcal{Y})$ whose notion of convergence corresponds with the total variation one.

Some lower bounds for $n \rightarrow \infty$
$\forall n \in \mathbb{N}^{*}$, we write $\widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}$ meaning to vary of $y^{1: n}(\omega) \equiv y^{1: n}$ in \mathcal{Y}^{n} for \mathbf{P}-a.a. $\omega \in \Omega$.

돋ாேㄴ

Some lower bounds for $n \rightarrow \infty$

$\forall n \in \mathbb{N}^{*}$, we write $\widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}$ meaning to vary of $y^{1: n}(\omega) \equiv y^{1: n}$ in \mathcal{Y}^{n} for \mathbf{P}-a.a. $\omega \in \Omega$.
Deviation measure of distributions: $\forall n \in \mathbb{N}^{*}, \widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}, \forall z^{1: n} \in \mathcal{Y}_{\vartheta}^{n}$, we univocally associate an element in $\mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y}), \mu_{n} \equiv \mu_{y^{1: n}}$ to $y^{1: n}$ and $\mu_{\vartheta, n} \equiv \mu_{\vartheta, z^{1: n}}$ to $z^{1: n}$, and we select a pseudo-distance \mathcal{T} on $\mathscr{P}(\mathcal{Y})$, possibly on $\mathscr{P}_{p}(\mathcal{Y})$.

Some lower bounds for $n \rightarrow \infty$

$\forall n \in \mathbb{N}^{*}$, we write $\widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}$ meaning to vary of $y^{1: n}(\omega) \equiv y^{1: n}$ in \mathcal{Y}^{n} for \mathbf{P}-a.a. $\omega \in \Omega$.
Deviation measure of distributions: $\forall n \in \mathbb{N}^{*}, \widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}, \forall z^{1: n} \in \mathcal{Y}_{\vartheta}^{n}$, we univocally associate an element in $\mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y}), \mu_{n} \equiv \mu_{y^{1: n}}$ to $y^{1: n}$ and $\mu_{\vartheta, n} \equiv \mu_{\vartheta, z^{1: n}}$ to $z^{1: n}$, and we select a pseudo-distance \mathcal{T} on $\mathscr{P}(\mathcal{Y})$, possibly on $\mathscr{P}_{p}(\mathcal{Y})$.

Example

$\mu_{n}=\widehat{\mu}_{n}:=n^{-1} \sum_{k=1}^{n} \delta_{y^{k}}$ and $\mu_{\vartheta, n}=\widehat{\mu}_{\vartheta, n}:=n^{-1} \sum_{k=1}^{n} \delta_{z^{k}}$ (empirical distributions).

Some lower bounds for $n \rightarrow \infty$

$\forall n \in \mathbb{N}^{*}$, we write $\widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}$ meaning to vary of $y^{1: n}(\omega) \equiv y^{1: n}$ in \mathcal{Y}^{n} for \mathbf{P}-a.a. $\omega \in \Omega$.
Deviation measure of distributions: $\forall n \in \mathbb{N}^{*}, \widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}, \forall z^{1: n} \in \mathcal{Y}_{\vartheta}^{n}$, we univocally associate an element in $\mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y}), \mu_{n} \equiv \mu_{y^{1: n}}$ to $y^{1: n}$ and $\mu_{\vartheta, n} \equiv \mu_{\vartheta, z^{1: n}}$ to $z^{1: n}$, and we select a pseudo-distance \mathcal{T} on $\mathscr{P}(\mathcal{Y})$, possibly on $\mathscr{P}_{p}(\mathcal{Y})$.

Example

$\mu_{n}=\widehat{\mu}_{n}:=n^{-1} \sum_{k=1}^{n} \delta_{y^{k}}$ and $\mu_{\vartheta, n}=\widehat{\mu}_{\vartheta, n}:=n^{-1} \sum_{k=1}^{n} \delta_{z^{k}}$ (empirical distributions).

Axiom [B0]
$\forall n \in \mathbb{N}^{*}$ and $\widetilde{\forall} \vartheta \in \mathcal{H}$, the three following conditions hold.

Some lower bounds for $n \rightarrow \infty$

$\forall n \in \mathbb{N}^{*}$, we write $\widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}$ meaning to vary of $y^{1: n}(\omega) \equiv y^{1: n}$ in \mathcal{Y}^{n} for \mathbf{P}-a.a. $\omega \in \Omega$.
Deviation measure of distributions: $\forall n \in \mathbb{N}^{*}, \widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}, \forall z^{1: n} \in \mathcal{Y}_{\vartheta}^{n}$, we univocally associate an element in $\mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{P}(\mathcal{Y}), \mu_{n} \equiv \mu_{y^{1: n}}$ to $y^{1: n}$ and $\mu_{\vartheta, n} \equiv \mu_{\vartheta, z^{1: n}}$ to $z^{1: n}$, and we select a pseudo-distance \mathcal{T} on $\mathscr{P}(\mathcal{Y})$, possibly on $\mathscr{P}_{p}(\mathcal{Y})$.

Example

$\mu_{n}=\widehat{\mu}_{n}:=n^{-1} \sum_{k=1}^{n} \delta_{y^{k}}$ and $\mu_{\vartheta, n}=\widehat{\mu}_{\vartheta, n}:=n^{-1} \sum_{k=1}^{n} \delta_{z^{k}}$ (empirical distributions).

Axiom [B0]
$\forall n \in \mathbb{N}^{*}$ and $\widetilde{\forall} \vartheta \in \mathcal{H}$, the three following conditions hold.
$1 \mathcal{Y}_{\vartheta}^{n} \in \mathcal{B}\left(\mathcal{Y}^{n}\right)$.

Some lower bounds for $n \rightarrow \infty$

$\forall n \in \mathbb{N}^{*}$, we write $\widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}$ meaning to vary of $y^{1: n}(\omega) \equiv y^{1: n}$ in \mathcal{Y}^{n} for \mathbf{P}-a.a. $\omega \in \Omega$.
Deviation measure of distributions: $\forall n \in \mathbb{N}^{*}, \widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}, \forall z^{1: n} \in \mathcal{Y}_{\vartheta}^{n}$, we univocally associate an element in $\mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y}), \mu_{n} \equiv \mu_{y^{1: n}}$ to $y^{1: n}$ and $\mu_{\vartheta, n} \equiv \mu_{\vartheta, z^{1: n}}$ to $z^{1: n}$, and we select a pseudo-distance \mathcal{T} on $\mathscr{P}(\mathcal{Y})$, possibly on $\mathscr{P}_{p}(\mathcal{Y})$.

Example

$\mu_{n}=\widehat{\mu}_{n}:=n^{-1} \sum_{k=1}^{n} \delta_{y^{k}}$ and $\mu_{\vartheta, n}=\widehat{\mu}_{\vartheta, n}:=n^{-1} \sum_{k=1}^{n} \delta_{z^{k}}$ (empirical distributions).

Axiom [B0]
$\forall n \in \mathbb{N}^{*}$ and $\widetilde{\forall} \vartheta \in \mathcal{H}$, the three following conditions hold.
$1 \mathcal{Y}_{\vartheta}^{n} \in \mathcal{B}\left(\mathcal{Y}^{n}\right)$.
$2 \widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}$, the function $z^{1: n} \mapsto \mathcal{T}\left(\mu_{n}, \mu_{\vartheta, n}\right)$ belongs to $\mathscr{B}\left(\mathcal{Y}_{\vartheta}^{n}, \mathbb{R}_{+}\right)$.

Some lower bounds for $n \rightarrow \infty$

$\forall n \in \mathbb{N}^{*}$, we write $\widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}$ meaning to vary of $y^{1: n}(\omega) \equiv y^{1: n}$ in \mathcal{Y}^{n} for \mathbf{P}-a.a. $\omega \in \Omega$.
Deviation measure of distributions: $\forall n \in \mathbb{N}^{*}, \widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}, \forall z^{1: n} \in \mathcal{Y}_{\vartheta}^{n}$, we univocally associate an element in $\mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{P}(\mathcal{Y}), \mu_{n} \equiv \mu_{y^{1: n}}$ to $y^{1: n}$ and $\mu_{\vartheta, n} \equiv \mu_{\vartheta, z^{1: n}}$ to $z^{1: n}$, and we select a pseudo-distance \mathcal{T} on $\mathscr{P}(\mathcal{Y})$, possibly on $\mathscr{P}_{p}(\mathcal{Y})$.

Example

$\mu_{n}=\widehat{\mu}_{n}:=n^{-1} \sum_{k=1}^{n} \delta_{y^{k}}$ and $\mu_{\vartheta, n}=\widehat{\mu}_{\vartheta, n}:=n^{-1} \sum_{k=1}^{n} \delta_{z^{k}}$ (empirical distributions).

Axiom [B0]

$\forall n \in \mathbb{N}^{*}$ and $\widetilde{\forall} \vartheta \in \mathcal{H}$, the three following conditions hold.
$1 \mathcal{Y}_{\vartheta}^{n} \in \mathcal{B}\left(\mathcal{Y}^{n}\right)$.
$2 \widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}$, the function $z^{1: n} \mapsto \mathcal{T}\left(\mu_{n}, \mu_{\vartheta, n}\right)$ belongs to $\mathscr{B}\left(\mathcal{Y}_{\vartheta}^{n}, \mathbb{R}_{+}\right)$.
$3 \widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}$ and $\left.\forall \varepsilon \in\right] 0, \varepsilon_{0}[$,

$$
\mu_{\vartheta}^{n}\left[D_{\varepsilon}^{n}\right] \geq \mu_{\vartheta}^{n}\left[\left\{z^{1: n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}\left(\mu_{n}, \mu_{\vartheta, n}\right) \leq \varepsilon\right\}\right] .
$$

Some lower bounds for $n \rightarrow \infty$

$\forall n \in \mathbb{N}^{*}$, we write $\widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}$ meaning to vary of $y^{1: n}(\omega) \equiv y^{1: n}$ in \mathcal{Y}^{n} for \mathbf{P}-a.a. $\omega \in \Omega$.
Deviation measure of distributions: $\forall n \in \mathbb{N}^{*}, \widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}, \forall z^{1: n} \in \mathcal{Y}_{\vartheta}^{n}$, we univocally associate an element in $\mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{P}(\mathcal{Y}), \mu_{n} \equiv \mu_{y^{1: n}}$ to $y^{1: n}$ and $\mu_{\vartheta, n} \equiv \mu_{\vartheta, z^{1: n}}$ to $z^{1: n}$, and we select a pseudo-distance \mathcal{T} on $\mathscr{P}(\mathcal{Y})$, possibly on $\mathscr{P}_{p}(\mathcal{Y})$.

Example

$\mu_{n}=\widehat{\mu}_{n}:=n^{-1} \sum_{k=1}^{n} \delta_{y^{k}}$ and $\mu_{\vartheta, n}=\widehat{\mu}_{\vartheta, n}:=n^{-1} \sum_{k=1}^{n} \delta_{z^{k}}$ (empirical distributions).

Axiom [B0]

$\forall n \in \mathbb{N}^{*}$ and $\widetilde{\forall} \vartheta \in \mathcal{H}$, the three following conditions hold.
$1 \mathcal{Y}_{\vartheta}^{n} \in \mathcal{B}\left(\mathcal{Y}^{n}\right)$.
$2 \widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}$, the function $z^{1: n} \mapsto \mathcal{T}\left(\mu_{n}, \mu_{\vartheta, n}\right)$ belongs to $\mathscr{B}\left(\mathcal{Y}_{\vartheta}^{n}, \mathbb{R}_{+}\right)$.
$3 \widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}$ and $\left.\forall \varepsilon \in\right] 0, \varepsilon_{0}[$,

$$
\mu_{\vartheta}^{n}\left[D_{\varepsilon}^{n}\right] \geq \mu_{\vartheta}^{n}\left[\left\{z^{1: n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}\left(\mu_{n}, \mu_{\vartheta, n}\right) \leq \varepsilon\right\}\right] .
$$

Some lower bounds for $n \rightarrow \infty$

$\forall n \in \mathbb{N}^{*}$, we write $\widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}$ meaning to vary of $y^{1: n}(\omega) \equiv y^{1: n}$ in \mathcal{Y}^{n} for \mathbf{P}-a.a. $\omega \in \Omega$.
Deviation measure of distributions: $\forall n \in \mathbb{N}^{*}, \widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}, \widetilde{\forall} \vartheta \in \mathcal{H}, \forall z^{1: n} \in \mathcal{Y}_{\vartheta}^{n}$, we univocally associate an element in $\mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{P}(\mathcal{Y}), \mu_{n} \equiv \mu_{y^{1: n}}$ to $y^{1: n}$ and $\mu_{\vartheta, n} \equiv \mu_{\vartheta, z^{1: n}}$ to $z^{1: n}$, and we select a pseudo-distance \mathcal{T} on $\mathscr{P}(\mathcal{Y})$, possibly on $\mathscr{P}_{p}(\mathcal{Y})$.

Example

$\mu_{n}=\widehat{\mu}_{n}:=n^{-1} \sum_{k=1}^{n} \delta_{y^{k}}$ and $\mu_{\vartheta, n}=\widehat{\mu}_{\vartheta, n}:=n^{-1} \sum_{k=1}^{n} \delta_{z^{k}}$ (empirical distributions).

Axiom [B0]

$\forall n \in \mathbb{N}^{*}$ and $\widetilde{\forall} \vartheta \in \mathcal{H}$, the three following conditions hold.
$1 \mathcal{Y}_{\vartheta}^{n} \in \mathcal{B}\left(\mathcal{Y}^{n}\right)$.
$2 \widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}$, the function $z^{1: n} \mapsto \mathcal{T}\left(\mu_{n}, \mu_{\vartheta, n}\right)$ belongs to $\mathscr{B}\left(\mathcal{Y}_{\vartheta}^{n}, \mathbb{R}_{+}\right)$.
$3 \widetilde{\forall} y^{1: n} \in \mathcal{Y}^{n}$ and $\left.\forall \varepsilon \in\right] 0, \varepsilon_{0}[$,

$$
\mu_{\vartheta}^{n}\left[D_{\varepsilon}^{n}\right] \geq \mu_{\vartheta}^{n}\left[\left\{z^{1: n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}\left(\mu_{n}, \mu_{\vartheta, n}\right) \leq \varepsilon\right\}\right] .
$$

3 of B0 holds if, $\forall n \in \mathbb{N}^{*}, \tilde{\forall} y^{1: n} \in \mathcal{Y}^{n}, \tilde{\forall} \vartheta \in \mathcal{H}$ and $\forall z^{1: n} \in \mathcal{Y}_{\vartheta}^{n}$,

$$
\mathcal{D}\left(y^{1: n}, z^{1: n}\right) \leq \mathcal{T}\left(\mu_{n}, \mu_{\vartheta, n}\right)
$$

Axiom [B1] (under B0)

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.

Axiom [B1] (under B0)

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.
1 For any $n \in \mathbb{N}^{*}, \omega \mapsto \mathcal{T}\left(\mu_{n}, \mu_{\star}\right)$ is \mathcal{A}-measurable as a function from Ω to \mathbb{R}_{+}.

Axiom [B1] (under B0)

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.
1 For any $n \in \mathbb{N}^{*}, \omega \mapsto \mathcal{T}\left(\mu_{n}, \mu_{\star}\right)$ is \mathcal{A}-measurable as a function from Ω to \mathbb{R}_{+}.
$2 \mathcal{T}\left(\mu_{n}, \mu_{\star}\right) \rightarrow 0$, P-a.s., as $n \rightarrow \infty$.

Axiom [B1] (under B0)

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.
1 For any $n \in \mathbb{N}^{*}, \omega \mapsto \mathcal{T}\left(\mu_{n}, \mu_{\star}\right)$ is \mathcal{A}-measurable as a function from Ω to \mathbb{R}_{+}.
$2 \mathcal{T}\left(\mu_{n}, \mu_{\star}\right) \rightarrow 0, \mathbf{P}$-a.s., as $n \rightarrow \infty$.

Axiom [B1] (under B0)

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.
1 For any $n \in \mathbb{N}^{*}, \omega \mapsto \mathcal{T}\left(\mu_{n}, \mu_{\star}\right)$ is \mathcal{A}-measurable as a function from Ω to \mathbb{R}_{+}.
$2 \mathcal{T}\left(\mu_{n}, \mu_{\star}\right) \rightarrow 0, \mathbf{P}$-a.s., as $n \rightarrow \infty$.

Axiom [B2] (under B1)

$\widetilde{\forall} \vartheta \in \mathcal{H}$, there exists unique $\mu_{\vartheta} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.

Axiom [B1] (under B0)

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.
1 For any $n \in \mathbb{N}^{*}, \omega \mapsto \mathcal{T}\left(\mu_{n}, \mu_{\star}\right)$ is \mathcal{A}-measurable as a function from Ω to \mathbb{R}_{+}.
$2 \mathcal{T}\left(\mu_{n}, \mu_{\star}\right) \rightarrow 0, \mathbf{P}$-a.s., as $n \rightarrow \infty$.

Axiom [B2] (under B1)

$\widetilde{\forall} \vartheta \in \mathcal{H}$, there exists unique $\mu_{\vartheta} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.
1 The function $\vartheta \mapsto \mathcal{T}\left(\mu_{\vartheta}, \mu_{\star}\right)$ belongs to $\mathscr{B}\left(\mathcal{H}, \mathbb{R}_{+}\right)$.

Axiom [B1] (under B0)

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.
1 For any $n \in \mathbb{N}^{*}, \omega \mapsto \mathcal{T}\left(\mu_{n}, \mu_{\star}\right)$ is \mathcal{A}-measurable as a function from Ω to \mathbb{R}_{+}.
$2 \mathcal{T}\left(\mu_{n}, \mu_{\star}\right) \rightarrow 0, \mathbf{P}$-a.s., as $n \rightarrow \infty$.

Axiom [B2] (under B1)

$\widetilde{\forall} \vartheta \in \mathcal{H}$, there exists unique $\mu_{\vartheta} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.
1 The function $\vartheta \mapsto \mathcal{T}\left(\mu_{\vartheta}, \mu_{\star}\right)$ belongs to $\mathscr{B}\left(\mathcal{H}, \mathbb{R}_{+}\right)$.
$2 \forall n \in \mathbb{N}^{*}$ and $\widetilde{\forall} \vartheta \in \mathcal{H}$, the function $z^{1: n} \mapsto \mathcal{T}\left(\mu_{\vartheta, n}, \mu_{\vartheta}\right)$ belongs to $\mathscr{B}\left(\mathcal{Y}_{\vartheta}^{n}, \mathbb{R}_{+}\right)$.

Axiom [B1] (under B0)

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.
1 For any $n \in \mathbb{N}^{*}, \omega \mapsto \mathcal{T}\left(\mu_{n}, \mu_{\star}\right)$ is \mathcal{A}-measurable as a function from Ω to \mathbb{R}_{+}.
$2 \mathcal{T}\left(\mu_{n}, \mu_{\star}\right) \rightarrow 0, \mathbf{P}$-a.s., as $n \rightarrow \infty$.

Axiom [B2] (under B1)

$\widetilde{\forall} \vartheta \in \mathcal{H}$, there exists unique $\mu_{\vartheta} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.
1 The function $\vartheta \mapsto \mathcal{T}\left(\mu_{\vartheta}, \mu_{\star}\right)$ belongs to $\mathscr{B}\left(\mathcal{H}, \mathbb{R}_{+}\right)$.
$2 \forall n \in \mathbb{N}^{*}$ and $\widetilde{\forall} \vartheta \in \mathcal{H}$, the function $z^{1: n} \mapsto \mathcal{T}\left(\mu_{\vartheta, n}, \mu_{\vartheta}\right)$ belongs to $\mathscr{B}\left(\mathcal{Y}_{\vartheta}^{n}, \mathbb{R}_{+}\right)$.
3 There exists $\tau \in[0,1[$ such that, $\widetilde{\forall} \vartheta \in \mathcal{H}$ and $\forall \varepsilon>0$,

$$
\lim \sup _{n} \mu_{\vartheta}^{n}\left[\left\{z^{1: n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}\left(\mu_{\vartheta, n}, \mu_{\vartheta}\right)>\varepsilon\right\}\right] \leq \tau .
$$

4 There exist $\sigma \in[0, \tau]$ and

Axiom [B1] (under B0)

There exists unique $\mu_{\star} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.
1 For any $n \in \mathbb{N}^{*}, \omega \mapsto \mathcal{T}\left(\mu_{n}, \mu_{\star}\right)$ is \mathcal{A}-measurable as a function from Ω to \mathbb{R}_{+}.
$2 \mathcal{T}\left(\mu_{n}, \mu_{\star}\right) \rightarrow 0$, P-a.s., as $n \rightarrow \infty$.

Axiom [B2] (under B1)

$\widetilde{\forall} \vartheta \in \mathcal{H}$, there exists unique $\mu_{\vartheta} \in \mathscr{P}(\mathcal{Y})$, possibly in $\mathscr{P}_{p}(\mathcal{Y})$, such that the following occurs.
1 The function $\vartheta \mapsto \mathcal{T}\left(\mu_{\vartheta}, \mu_{\star}\right)$ belongs to $\mathscr{B}\left(\mathcal{H}, \mathbb{R}_{+}\right)$.
$2 \forall n \in \mathbb{N}^{*}$ and $\widetilde{\forall} \vartheta \in \mathcal{H}$, the function $z^{1: n} \mapsto \mathcal{T}\left(\mu_{\vartheta, n}, \mu_{\vartheta}\right)$ belongs to $\mathscr{B}\left(\mathcal{Y}_{\vartheta}^{n}, \mathbb{R}_{+}\right)$.
3 There exists $\tau \in[0,1[$ such that, $\widetilde{\forall} \vartheta \in \mathcal{H}$ and $\forall \varepsilon>0$,

$$
\lim \sup _{n} \mu_{\vartheta}^{n}\left[\left\{z^{1: n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}\left(\mu_{\vartheta, n}, \mu_{\vartheta}\right)>\varepsilon\right\}\right] \leq \tau .
$$

4 There exist $\sigma \in[0, \tau]$ and $\varepsilon_{1}>0$ such that, $\widetilde{\forall} \vartheta \in \mathcal{H}$ and $\left.\forall \varepsilon \in\right] 0, \varepsilon_{1}[$,

$$
\liminf _{n} \mu_{\vartheta}^{n}\left[\left\{z^{1: n} \in \mathcal{Y}_{\vartheta}^{n} \mid \mathcal{T}\left(\mu_{\vartheta, n}, \mu_{\vartheta}\right)>\varepsilon\right\}\right] \geq \sigma
$$

3 of $B 2$ is equivalent to any version of that in which an upper bound for ε is imposed.

돈든

3 of B 2 is equivalent to any version of that in which an upper bound for ε is imposed.
Furthermore if, $\forall \vartheta \in \mathcal{H}$ and $\forall \varepsilon>0, \mu_{\vartheta}^{n}\left[\mathcal{T}\left(\mu_{\vartheta, n}, \mu_{\vartheta}\right)>\varepsilon\right] \rightarrow 0$ as $n \rightarrow \infty$ (shortly put), then any $\tau \in\left[0,1\right.$ [satisfies 3 of B 2 while only $\sigma=0$ but any $\varepsilon_{1}>0$ fulfill 4 of B 2 .

3 of B 2 is equivalent to any version of that in which an upper bound for ε is imposed.
Furthermore if, $\forall \vartheta \in \mathcal{H}$ and $\forall \varepsilon>0, \mu_{\vartheta}^{n}\left[\mathcal{T}\left(\mu_{\vartheta, n}, \mu_{\vartheta}\right)>\varepsilon\right] \rightarrow 0$ as $n \rightarrow \infty$ (shortly put), then any $\tau \in\left[0,1\left[\right.\right.$ satisfies 3 of B 2 while only $\sigma=0$ but any $\varepsilon_{1}>0$ fulfill 4 of B 2 .

Axiom [B3] (under 1 and 2 of B2)

There exists $\vartheta_{\star} \in \mathcal{H}$ which minimizes $\vartheta \mapsto \mathcal{T}\left(\mu_{\vartheta}, \mu_{\star}\right)$ over \mathcal{H} : simbolically,

$$
\vartheta_{\star} \in \arg \min _{\mathcal{H}} \mathcal{T}\left(\mu_{(\cdot)}, \mu_{\star}\right) .
$$

\square
strictly increasing function

3 of B 2 is equivalent to any version of that in which an upper bound for ε is imposed.
Furthermore if, $\forall \vartheta \in \mathcal{H}$ and $\forall \varepsilon>0, \mu_{\vartheta}^{n}\left[\mathcal{T}\left(\mu_{\vartheta, n}, \mu_{\vartheta}\right)>\varepsilon\right] \rightarrow 0$ as $n \rightarrow \infty$ (shortly put), then any $\tau \in\left[0,1\right.$ [satisfies 3 of B 2 while only $\sigma=0$ but any $\varepsilon_{1}>0$ fulfill 4 of B 2 .

Axiom [B3] (under 1 and 2 of B2)
There exists $\vartheta_{\star} \in \mathcal{H}$ which minimizes $\vartheta \mapsto \mathcal{T}\left(\mu_{\vartheta}, \mu_{\star}\right)$ over \mathcal{H} : simbolically,

$$
\vartheta_{\star} \in \arg \min _{\mathcal{H}} \mathcal{T}\left(\mu_{(\cdot)}, \mu_{\star}\right)
$$

We denote $\varepsilon_{\star} \doteq \mathcal{T}\left(\mu_{\vartheta_{\star}}, \mu_{\star}\right)=\min _{\mathcal{H}} \mathcal{T}\left(\mu_{(\cdot)}, \mu_{\star}\right) \geq 0$ and, $\widetilde{\forall} \vartheta \in \mathcal{H}, \mathcal{T}_{\vartheta}:=\mathcal{T}\left(\mu_{\vartheta}, \mu_{\star}\right) \geq \varepsilon_{\star}$.

3 of B 2 is equivalent to any version of that in which an upper bound for ε is imposed.
Furthermore if, $\widetilde{\forall} \vartheta \in \mathcal{H}$ and $\forall \varepsilon>0, \mu_{\vartheta}^{n}\left[\mathcal{T}\left(\mu_{\vartheta, n}, \mu_{\vartheta}\right)>\varepsilon\right] \rightarrow 0$ as $n \rightarrow \infty$ (shortly put), then any $\tau \in\left[0,1\left[\right.\right.$ satisfies 3 of B 2 while only $\sigma=0$ but any $\varepsilon_{1}>0$ fulfill 4 of B 2 .

Axiom [B3] (under 1 and 2 of B2)

There exists $\vartheta_{\star} \in \mathcal{H}$ which minimizes $\vartheta \mapsto \mathcal{T}\left(\mu_{\vartheta}, \mu_{\star}\right)$ over \mathcal{H} : simbolically,

$$
\vartheta_{\star} \in \arg \min _{\mathcal{H}} \mathcal{T}\left(\mu_{(\cdot)}, \mu_{\star}\right) .
$$

We denote $\varepsilon_{\star} \doteq \mathcal{T}\left(\mu_{\vartheta_{\star}}, \mu_{\star}\right)=\min _{\mathcal{H}} \mathcal{T}\left(\mu_{(\cdot)}, \mu_{\star}\right) \geq 0$ and, $\widetilde{\forall} \vartheta \in \mathcal{H}, \mathcal{T}_{\vartheta}:=\mathcal{T}\left(\mu_{\vartheta}, \mu_{\star}\right) \geq \varepsilon_{\star}$.

Axiom [B4] (under B3)

There exist a neighborhood $U_{\star} \subset \mathcal{H}$ of ϑ_{\star}, a connected neighborhood $I_{0} \subset \mathbb{R}_{+}$of zero and a strictly increasing function $\psi: I_{0} \rightarrow \mathbb{R}_{+}$all such that, $\forall \vartheta \vartheta U_{\star}$,

$$
\mathcal{T}_{\vartheta}-\varepsilon_{\star} \leq \psi\left(\varrho_{\mathcal{H}}\left(\vartheta, \vartheta_{\star}\right)\right) .
$$

3 of B 2 is equivalent to any version of that in which an upper bound for ε is imposed.
Furthermore if, $\widetilde{\forall} \vartheta \in \mathcal{H}$ and $\forall \varepsilon>0, \mu_{\vartheta}^{n}\left[\mathcal{T}\left(\mu_{\vartheta, n}, \mu_{\vartheta}\right)>\varepsilon\right] \rightarrow 0$ as $n \rightarrow \infty$ (shortly put), then any $\tau \in\left[0,1\left[\right.\right.$ satisfies 3 of B 2 while only $\sigma=0$ but any $\varepsilon_{1}>0$ fulfill 4 of B 2 .

Axiom [B3] (under 1 and 2 of B2)

There exists $\vartheta_{\star} \in \mathcal{H}$ which minimizes $\vartheta \mapsto \mathcal{T}\left(\mu_{\vartheta}, \mu_{\star}\right)$ over \mathcal{H} : simbolically,

$$
\vartheta_{\star} \in \arg \min _{\mathcal{H}} \mathcal{T}\left(\mu_{(\cdot)}, \mu_{\star}\right) .
$$

We denote $\varepsilon_{\star} \doteq \mathcal{T}\left(\mu_{\vartheta_{\star}}, \mu_{\star}\right)=\min _{\mathcal{H}} \mathcal{T}\left(\mu_{(\cdot)}, \mu_{\star}\right) \geq 0$ and, $\widetilde{\forall} \vartheta \in \mathcal{H}, \mathcal{T}_{\vartheta}:=\mathcal{T}\left(\mu_{\vartheta}, \mu_{\star}\right) \geq \varepsilon_{\star}$.

Axiom [B4] (under B3)

There exist a neighborhood $U_{\star} \subset \mathcal{H}$ of ϑ_{\star}, a connected neighborhood $I_{0} \subset \mathbb{R}_{+}$of zero and a strictly increasing function $\psi: I_{0} \rightarrow \mathbb{R}_{+}$all such that, $\forall \vartheta \vartheta U_{\star}$,

$$
\mathcal{T}_{\vartheta}-\varepsilon_{\star} \leq \psi\left(\varrho_{\mathcal{H}}\left(\vartheta, \vartheta_{\star}\right)\right) .
$$

We write "for any $\left(y^{1: n}\right)_{n}$ " meaning to vary of $\left(y^{1: n}(\omega)\right)_{n} \equiv\left(y^{1: n}\right)_{n}$, with $y^{1: n}(\omega) \equiv y^{1: n}$ in \mathcal{Y}^{n} for any $n \in \mathbb{N}^{*}$, w.r.t. a $\omega \in \Omega$.

3 of B 2 is equivalent to any version of that in which an upper bound for ε is imposed.
Furthermore if, $\widetilde{\forall} \vartheta \in \mathcal{H}$ and $\forall \varepsilon>0, \mu_{\vartheta}^{n}\left[\mathcal{T}\left(\mu_{\vartheta, n}, \mu_{\vartheta}\right)>\varepsilon\right] \rightarrow 0$ as $n \rightarrow \infty$ (shortly put), then any $\tau \in\left[0,1\left[\right.\right.$ satisfies 3 of B 2 while only $\sigma=0$ but any $\varepsilon_{1}>0$ fulfill 4 of B 2 .

Axiom [B3] (under 1 and 2 of B2)

There exists $\vartheta_{\star} \in \mathcal{H}$ which minimizes $\vartheta \mapsto \mathcal{T}\left(\mu_{\vartheta}, \mu_{\star}\right)$ over \mathcal{H} : simbolically,

$$
\vartheta_{\star} \in \arg \min _{\mathcal{H}} \mathcal{T}\left(\mu_{(\cdot)}, \mu_{\star}\right) .
$$

We denote $\varepsilon_{\star} \doteq \mathcal{T}\left(\mu_{\vartheta_{\star}}, \mu_{\star}\right)=\min _{\mathcal{H}} \mathcal{T}\left(\mu_{(\cdot)}, \mu_{\star}\right) \geq 0$ and, $\widetilde{\forall} \vartheta \in \mathcal{H}, \mathcal{T}_{\vartheta}:=\mathcal{T}\left(\mu_{\vartheta}, \mu_{\star}\right) \geq \varepsilon_{\star}$.

Axiom [B4] (under B3)

There exist a neighborhood $U_{\star} \subset \mathcal{H}$ of ϑ_{\star}, a connected neighborhood $I_{0} \subset \mathbb{R}_{+}$of zero and a strictly increasing function $\psi: I_{0} \rightarrow \mathbb{R}_{+}$all such that, $\forall \vartheta \vartheta U_{\star}$,

$$
\mathcal{T}_{\vartheta}-\varepsilon_{\star} \leq \psi\left(\varrho_{\mathcal{H}}\left(\vartheta, \vartheta_{\star}\right)\right) .
$$

We write "for any $\left(y^{1: n}\right)_{n}$ " meaning to vary of $\left(y^{1: n}(\omega)\right)_{n} \equiv\left(y^{1: n}\right)_{n}$, with $y^{1: n}(\omega) \equiv y^{1: n}$ in \mathcal{Y}^{n} for any $n \in \mathbb{N}^{*}$, w.r.t. a $\omega \in \Omega$. Lastly, for $\varepsilon>0$, we denote by ε^{-}any element of $\left.] 0, \varepsilon\right]$.

Proposition

Under assumptions $\mathrm{B} 0, \mathrm{~B} 1,1,2$ and 3 of B 2 and B 3 , the following occurs so far as $\varepsilon_{\star}<\varepsilon_{0}$, for $\varepsilon \in] 0, \varepsilon_{0}-\varepsilon_{\star}\left[,\left(y^{1: n}\right)_{n}\right.$ with $n \equiv n_{\varepsilon}$ large enough and with probability \mathbf{P} going to 1 as $n \rightarrow \infty$.

Proposition

Under assumptions B0, B1, 1, 2 and 3 of B 2 and B 3 , the following occurs so far as $\varepsilon_{\star}<\varepsilon_{0}$, for $\varepsilon \in] 0, \varepsilon_{0}-\varepsilon_{\star}\left[,\left(y^{1: n}\right)_{n}\right.$ with $n \equiv n_{\varepsilon}$ large enough and with probability \mathbf{P} going to 1 as $n \rightarrow \infty$.
$1 \pi_{y 1: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(.)} \geq \varepsilon_{\star}+\varepsilon^{-} / 3\right] \geq(1-\tau) \pi\left[\varepsilon_{\star}+\varepsilon^{-} / 3 \leq \mathcal{T}_{(.)} \leq \varepsilon_{\star}+\varepsilon / 3\right]$.
 Under assumption 4 of B2, let's suppose that in 3 of B0 the equality holds and that}

Proposition

Under assumptions B0, B1, 1, 2 and 3 of B 2 and B 3 , the following occurs so far as $\varepsilon_{\star}<\varepsilon_{0}$, for $\varepsilon \in] 0, \varepsilon_{0}-\varepsilon_{\star}\left[,\left(y^{1: n}\right)_{n}\right.$ with $n \equiv n_{\varepsilon}$ large enough and with probability \mathbf{P} going to 1 as $n \rightarrow \infty$.
$1 \pi_{y 1: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(.)} \geq \varepsilon_{\star}+\varepsilon^{-} / 3\right] \geq(1-\tau) \pi\left[\varepsilon_{\star}+\varepsilon^{-} / 3 \leq \mathcal{T}_{(.)} \leq \varepsilon_{\star}+\varepsilon / 3\right]$.
$2 \pi_{y^{1}: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{H} \backslash \arg \min _{\mathcal{H}} \mathcal{T}_{(\cdot)}\right] \geq(1-\tau) \pi\left[\varepsilon_{\star}<\mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+\varepsilon / 3\right]$.

Proposition

Under assumptions $\mathrm{B} 0, \mathrm{~B} 1,1,2$ and 3 of B 2 and B 3 , the following occurs so far as $\varepsilon_{\star}<\varepsilon_{0}$, for $\varepsilon \in] 0, \varepsilon_{0}-\varepsilon_{\star}\left[,\left(y^{1: n}\right)_{n}\right.$ with $n \equiv n_{\varepsilon}$ large enough and with probability \mathbf{P} going to 1 as $n \rightarrow \infty$.
$1 \pi_{y 1: n}^{\varepsilon_{\mathrm{y}}+\varepsilon^{2}}\left[\mathcal{T}_{(.)} \geq \varepsilon_{\star}+\varepsilon^{-} / 3\right] \geq(1-\tau) \pi\left[\varepsilon_{\star}+\varepsilon^{-} / 3 \leq \mathcal{T}_{(.)} \leq \varepsilon_{\star}+\varepsilon / 3\right]$.
$2 \pi_{y^{1}: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{H} \backslash \arg \min _{\mathcal{H}} \mathcal{T}_{(\cdot)}\right] \geq(1-\tau) \pi\left[\varepsilon_{\star}<\mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+\varepsilon / 3\right]$.
3 Under assumption 4 of B2, let's suppose that in 3 of B0 the equality holds and that $\varepsilon_{\star}<\varepsilon_{1} / 2$.

Proposition

Under assumptions B0, B1, 1, 2 and 3 of B 2 and B 3 , the following occurs so far as $\varepsilon_{\star}<\varepsilon_{0}$, for $\varepsilon \in] 0, \varepsilon_{0}-\varepsilon_{\star}\left[,\left(y^{1: n}\right)_{n}\right.$ with $n \equiv n_{\varepsilon}$ large enough and with probability \mathbf{P} going to 1 as $n \rightarrow \infty$.
$1 \pi_{y 1: n}^{\varepsilon_{\mathrm{y}}+\varepsilon^{2}}\left[\mathcal{T}_{(.)} \geq \varepsilon_{\star}+\varepsilon^{-} / 3\right] \geq(1-\tau) \pi\left[\varepsilon_{\star}+\varepsilon^{-} / 3 \leq \mathcal{T}_{(.)} \leq \varepsilon_{\star}+\varepsilon / 3\right]$.
$2 \pi_{y^{1}: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{H} \backslash \arg \min _{\mathcal{H}} \mathcal{T}_{(\cdot)}\right] \geq(1-\tau) \pi\left[\varepsilon_{\star}<\mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+\varepsilon / 3\right]$.
3 Under assumption 4 of B2, let's suppose that in 3 of B0 the equality holds and that $\varepsilon_{\star}<\varepsilon_{1} / 2$.

Proposition

Under assumptions $\mathrm{B} 0, \mathrm{~B} 1,1,2$ and 3 of B 2 and B 3 , the following occurs so far as $\varepsilon_{\star}<\varepsilon_{0}$, for $\varepsilon \in] 0, \varepsilon_{0}-\varepsilon_{\star}\left[,\left(y^{1: n}\right)_{n}\right.$ with $n \equiv n_{\varepsilon}$ large enough and with probability \mathbf{P} going to 1 as $n \rightarrow \infty$.
$1 \pi_{y 1: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(\cdot)} \geq \varepsilon_{\star}+\varepsilon^{-} / 3\right] \geq(1-\tau) \pi\left[\varepsilon_{\star}+\varepsilon^{-} / 3 \leq \mathcal{T}_{(.)} \leq \varepsilon_{\star}+\varepsilon / 3\right]$.
$2 \pi_{y^{1}: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{H} \backslash \arg \min _{\mathcal{H}} \mathcal{T}_{(\cdot)}\right] \geq(1-\tau) \pi\left[\varepsilon_{\star}<\mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+\varepsilon / 3\right]$.
3 Under assumption 4 of B2, let's suppose that in 3 of B0 the equality holds and that $\varepsilon_{\star}<\varepsilon_{1} / 2$. Then, for any $\left.\varepsilon \in\right] 0, \varepsilon_{0}-\varepsilon_{\star}[$ even more enough small,

$$
\lambda_{\varepsilon}:=(1-\sigma) \pi\left[\mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+5 \varepsilon / 3\right]+\tau \pi\left[\mathcal{T}_{(\cdot)}>\varepsilon_{\star}+5 \varepsilon / 3\right]>0
$$

Proposition

Under assumptions $\mathrm{B} 0, \mathrm{~B} 1,1,2$ and 3 of B 2 and B 3 , the following occurs so far as $\varepsilon_{\star}<\varepsilon_{0}$, for $\varepsilon \in] 0, \varepsilon_{0}-\varepsilon_{\star}\left[,\left(y^{1: n}\right)_{n}\right.$ with $n \equiv n_{\varepsilon}$ large enough and with probability \mathbf{P} going to 1 as $n \rightarrow \infty$.
$1 \pi_{y 1: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(.)} \geq \varepsilon_{\star}+\varepsilon^{-} / 3\right] \geq(1-\tau) \pi\left[\varepsilon_{\star}+\varepsilon^{-} / 3 \leq \mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+\varepsilon / 3\right]$.
$2 \pi_{y^{1}: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{H} \backslash \arg \min _{\mathcal{H}} \mathcal{T}_{(\cdot)}\right] \geq(1-\tau) \pi\left[\varepsilon_{\star}<\mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+\varepsilon / 3\right]$.
3 Under assumption 4 of B2, let's suppose that in 3 of B0 the equality holds and that $\varepsilon_{\star}<\varepsilon_{1} / 2$. Then, for any $\left.\varepsilon \in\right] 0, \varepsilon_{0}-\varepsilon_{\star}[$ even more enough small,

$$
\lambda_{\varepsilon}:=(1-\sigma) \pi\left[\mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+5 \varepsilon / 3\right]+\tau \pi\left[\mathcal{T}_{(\cdot)}>\varepsilon_{\star}+5 \varepsilon / 3\right]>0
$$

and

$$
\pi_{y 1: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(\cdot)} \geq \varepsilon_{\star}+\varepsilon^{-} / 3\right] \geq \frac{1-\tau}{\lambda_{\varepsilon}} \pi\left[\varepsilon_{\star}+\varepsilon^{-} / 3 \leq \mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+\varepsilon / 3\right]
$$

Proposition

Under assumptions $\mathrm{B} 0, \mathrm{~B} 1,1,2$ and 3 of B 2 and B 3 , the following occurs so far as $\varepsilon_{\star}<\varepsilon_{0}$, for $\varepsilon \in] 0, \varepsilon_{0}-\varepsilon_{\star}\left[,\left(y^{1: n}\right)_{n}\right.$ with $n \equiv n_{\varepsilon}$ large enough and with probability \mathbf{P} going to 1 as $n \rightarrow \infty$.
$1 \pi_{y 1: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(.)} \geq \varepsilon_{\star}+\varepsilon^{-} / 3\right] \geq(1-\tau) \pi\left[\varepsilon_{\star}+\varepsilon^{-} / 3 \leq \mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+\varepsilon / 3\right]$.
$2 \pi_{y^{1}: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{H} \backslash \arg \min _{\mathcal{H}} \mathcal{T}_{(\cdot)}\right] \geq(1-\tau) \pi\left[\varepsilon_{\star}<\mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+\varepsilon / 3\right]$.
3 Under assumption 4 of B2, let's suppose that in 3 of B0 the equality holds and that $\varepsilon_{\star}<\varepsilon_{1} / 2$. Then, for any $\left.\varepsilon \in\right] 0, \varepsilon_{0}-\varepsilon_{\star}[$ even more enough small,

$$
\lambda_{\varepsilon}:=(1-\sigma) \pi\left[\mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+5 \varepsilon / 3\right]+\tau \pi\left[\mathcal{T}_{(\cdot)}>\varepsilon_{\star}+5 \varepsilon / 3\right]>0
$$

and

$$
\pi_{y 1: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(\cdot)} \geq \varepsilon_{\star}+\varepsilon^{-} / 3\right] \geq \frac{1-\tau}{\lambda_{\varepsilon}} \pi\left[\varepsilon_{\star}+\varepsilon^{-} / 3 \leq \mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+\varepsilon / 3\right]
$$

4 Under assumption B4, for any $\zeta \in I_{0} \backslash\{0\}$ and $r>0$ small enough,

$$
\pi_{y^{1}: n}^{\varepsilon_{1}+\varepsilon}\left[\varrho_{\mathcal{H}}\left(\cdot, \vartheta_{\star}\right) \geq r\right] \geq \pi_{y^{1}: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(\cdot)} \geq \varepsilon_{\star}+\psi(\zeta)\right]
$$

Proposition

Under assumptions $\mathrm{B} 0, \mathrm{~B} 1,1,2$ and 3 of B 2 and B 3 , the following occurs so far as $\varepsilon_{\star}<\varepsilon_{0}$, for $\varepsilon \in] 0, \varepsilon_{0}-\varepsilon_{\star}\left[,\left(y^{1: n}\right)_{n}\right.$ with $n \equiv n_{\varepsilon}$ large enough and with probability \mathbf{P} going to 1 as $n \rightarrow \infty$.
$1 \pi_{y 1: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(.)} \geq \varepsilon_{\star}+\varepsilon^{-} / 3\right] \geq(1-\tau) \pi\left[\varepsilon_{\star}+\varepsilon^{-} / 3 \leq \mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+\varepsilon / 3\right]$.
$2 \pi_{y^{1}: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{H} \backslash \arg \min _{\mathcal{H}} \mathcal{T}_{(\cdot)}\right] \geq(1-\tau) \pi\left[\varepsilon_{\star}<\mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+\varepsilon / 3\right]$.
3 Under assumption 4 of B2, let's suppose that in 3 of B0 the equality holds and that $\varepsilon_{\star}<\varepsilon_{1} / 2$. Then, for any $\left.\varepsilon \in\right] 0, \varepsilon_{0}-\varepsilon_{\star}[$ even more enough small,

$$
\lambda_{\varepsilon}:=(1-\sigma) \pi\left[\mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+5 \varepsilon / 3\right]+\tau \pi\left[\mathcal{T}_{(\cdot)}>\varepsilon_{\star}+5 \varepsilon / 3\right]>0
$$

and

$$
\pi_{y 1: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(\cdot)} \geq \varepsilon_{\star}+\varepsilon^{-} / 3\right] \geq \frac{1-\tau}{\lambda_{\varepsilon}} \pi\left[\varepsilon_{\star}+\varepsilon^{-} / 3 \leq \mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+\varepsilon / 3\right]
$$

4 Under assumption B4, for any $\zeta \in I_{0} \backslash\{0\}$ and $r>0$ small enough,

$$
\pi_{y^{1}: n}^{\varepsilon_{1}+\varepsilon}\left[\varrho_{\mathcal{H}}\left(\cdot, \vartheta_{\star}\right) \geq r\right] \geq \pi_{y^{1}: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(\cdot)} \geq \varepsilon_{\star}+\psi(\zeta)\right]
$$

Proposition

Under assumptions $\mathrm{B} 0, \mathrm{~B} 1,1,2$ and 3 of B 2 and B 3 , the following occurs so far as $\varepsilon_{\star}<\varepsilon_{0}$, for $\varepsilon \in] 0, \varepsilon_{0}-\varepsilon_{\star}\left[,\left(y^{1: n}\right)_{n}\right.$ with $n \equiv n_{\varepsilon}$ large enough and with probability \mathbf{P} going to 1 as $n \rightarrow \infty$.
$1 \pi_{y 1: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(.)} \geq \varepsilon_{\star}+\varepsilon^{-} / 3\right] \geq(1-\tau) \pi\left[\varepsilon_{\star}+\varepsilon^{-} / 3 \leq \mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+\varepsilon / 3\right]$.
$2 \pi_{y^{1}: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{H} \backslash \arg \min _{\mathcal{H}} \mathcal{T}_{(\cdot)}\right] \geq(1-\tau) \pi\left[\varepsilon_{\star}<\mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+\varepsilon / 3\right]$.
3 Under assumption 4 of B2, let's suppose that in 3 of B0 the equality holds and that $\varepsilon_{\star}<\varepsilon_{1} / 2$. Then, for any $\left.\varepsilon \in\right] 0, \varepsilon_{0}-\varepsilon_{\star}[$ even more enough small,

$$
\lambda_{\varepsilon}:=(1-\sigma) \pi\left[\mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+5 \varepsilon / 3\right]+\tau \pi\left[\mathcal{T}_{(\cdot)}>\varepsilon_{\star}+5 \varepsilon / 3\right]>0
$$

and

$$
\pi_{y 1: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(\cdot)} \geq \varepsilon_{\star}+\varepsilon^{-} / 3\right] \geq \frac{1-\tau}{\lambda_{\varepsilon}} \pi\left[\varepsilon_{\star}+\varepsilon^{-} / 3 \leq \mathcal{T}_{(\cdot)} \leq \varepsilon_{\star}+\varepsilon / 3\right]
$$

4 Under assumption B4, for any $\zeta \in I_{0} \backslash\{0\}$ and $r>0$ small enough,

$$
\pi_{y^{1}: n}^{\varepsilon_{\star}+\varepsilon}\left[\varrho_{\mathcal{H}}\left(\cdot, \vartheta_{\star}\right) \geq r\right] \geq \pi_{y^{1}: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(\cdot)} \geq \varepsilon_{\star}+\psi(\zeta)\right]
$$

for which lower bounds of a and eventually chold if also ζ is small enough.

Let's discuss how a condition consistent with A2 as the following could interact.
Axiom [$\mathrm{A} 2^{\prime}$] (under A 1)

Proposition
Under assumptions B0, B1, 1 and 2 of B2, B3, A1 and A 2 ', the following occurs so far as

돈ாேヒ

Let's discuss how a condition consistent with A2 as the following could interact.
Axiom [A2'] (under A1)
There exist $\left.\delta, \varepsilon^{\prime} \in\right] 0, \infty\left[\right.$ and $g \in L^{1}(\pi)$ with $g \geq \delta[\pi]$ all such that, $\widetilde{\forall} \vartheta \in \mathcal{H}$ and $\forall\left(z^{1: n}\right)_{n}$ with $z^{1: n} \in D_{\varepsilon^{\prime}}^{n}$ for any $n \in \mathbb{N}^{*}$,

$$
\delta \leq \liminf _{n} f_{\vartheta}^{n}\left(z^{1: n}\right) \quad \text { and } \quad \lim \sup _{n} f_{\vartheta}^{n}\left(z^{1: n}\right) \leq g(\vartheta) .
$$

Proposition
Inder assumntions $\mathrm{B} 0, \mathrm{~B} 1,1$ and 2 of $\mathrm{B} 2, \mathrm{~B} 3, \mathrm{~A} 1$ and A 2 ', the following occurs so far as

Let's discuss how a condition consistent with A2 as the following could interact.
Axiom [A2'] (under A1)
There exist $\left.\delta, \varepsilon^{\prime} \in\right] 0, \infty\left[\right.$ and $g \in L^{1}(\pi)$ with $g \geq \delta[\pi]$ all such that, $\widetilde{\forall} \vartheta \in \mathcal{H}$ and $\forall\left(z^{1: n}\right)_{n}$ with $z^{1: n} \in D_{\varepsilon^{\prime}}^{n}$ for any $n \in \mathbb{N}^{*}$,

$$
\delta \leq \liminf \inf _{n} f_{\vartheta}^{n}\left(z^{1: n}\right) \quad \text { and } \quad \lim \sup _{n} f_{\vartheta}^{n}\left(z^{1: n}\right) \leq g(\vartheta)
$$

Proposition

Under assumptions B0, B1, 1 and 2 of B2, B3, A 1 and $\mathrm{A} 2^{\prime}$, the following occurs so far as $\varepsilon_{\star}<\varepsilon_{0} \wedge \varepsilon^{\prime}$ and for $\left.\varepsilon \in\right] 0, \varepsilon_{0} \wedge \varepsilon^{\prime}-\varepsilon_{\star}\left[\right.$ and \mathbf{P}-a.a. $\left(y^{1: n}\right)_{n}$.

Let's discuss how a condition consistent with A2 as the following could interact.
Axiom [A2'] (under A1)
There exist $\left.\delta, \varepsilon^{\prime} \in\right] 0, \infty\left[\right.$ and $g \in L^{1}(\pi)$ with $g \geq \delta[\pi]$ all such that, $\widetilde{\forall} \vartheta \in \mathcal{H}$ and $\forall\left(z^{1: n}\right)_{n}$ with $z^{1: n} \in D_{\varepsilon^{\prime}}^{n}$ for any $n \in \mathbb{N}^{*}$,

$$
\delta \leq \liminf _{n} f_{\vartheta}^{n}\left(z^{1: n}\right) \quad \text { and } \quad \lim \sup _{n} f_{\vartheta}^{n}\left(z^{1: n}\right) \leq g(\vartheta) .
$$

Proposition

Under assumptions B0, B1, 1 and 2 of B2, B3, A 1 and A^{\prime}, the following occurs so far as $\varepsilon_{\star}<\varepsilon_{0} \wedge \varepsilon^{\prime}$ and for $\left.\varepsilon \in\right] 0, \varepsilon_{0} \wedge \varepsilon^{\prime}-\varepsilon_{\star}\left[\right.$ and $\mathbf{P}-$ a.a. $\left(y^{1: n}\right)_{n}$.

1 For any $\zeta>0, \pi_{y 1: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(\cdot)} \geq \varepsilon_{\star}+\zeta\right] \geq \frac{\delta}{\|g\|_{1}} \pi\left[\mathcal{T}_{(\cdot)} \geq \varepsilon_{\star}+\zeta\right]$.

Let's discuss how a condition consistent with A2 as the following could interact.

Axiom [A2'] (under A1)

There exist $\left.\delta, \varepsilon^{\prime} \in\right] 0, \infty\left[\right.$ and $g \in L^{1}(\pi)$ with $g \geq \delta[\pi]$ all such that, $\widetilde{\forall} \vartheta \in \mathcal{H}$ and $\forall\left(z^{1: n}\right)_{n}$ with $z^{1: n} \in D_{\varepsilon^{\prime}}^{n}$ for any $n \in \mathbb{N}^{*}$,

$$
\delta \leq \liminf _{n} f_{\vartheta}^{n}\left(z^{1: n}\right) \quad \text { and } \quad \lim \sup _{n} f_{\vartheta}^{n}\left(z^{1: n}\right) \leq g(\vartheta) .
$$

Proposition

Under assumptions $\mathrm{B} 0, \mathrm{~B} 1,1$ and 2 of $\mathrm{B} 2, \mathrm{~B} 3, \mathrm{~A} 1$ and $\mathrm{A} 2^{\prime}$, the following occurs so far as $\varepsilon_{\star}<\varepsilon_{0} \wedge \varepsilon^{\prime}$ and for $\left.\varepsilon \in\right] 0, \varepsilon_{0} \wedge \varepsilon^{\prime}-\varepsilon_{\star}\left[\right.$ and \mathbf{P}-a.a. $\left(y^{1: n}\right)_{n}$.

1 For any $\zeta>0, \pi_{y 1: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{T}_{(\cdot)} \geq \varepsilon_{\star}+\zeta\right] \geq \frac{\delta}{\|g\|_{1}} \pi\left[\mathcal{T}_{(\cdot)} \geq \varepsilon_{\star}+\zeta\right]$.
$2 \pi_{y 1: n}^{\varepsilon_{\star}+\varepsilon}\left[\mathcal{H} \backslash \arg \min _{\mathcal{H}} \mathcal{T}_{(\cdot)}\right] \geq \frac{\delta}{\|g\|_{1}} \pi\left[\mathcal{H} \backslash \arg \min _{\mathcal{H}} \mathcal{T}_{(\cdot)}\right]$.

