Advanced Methods for Modelling Physical Phenomena: from data gathering & analysis to hypothesis testing and parameter estimation

Sergey Vinogradov

Lebedev Institute and Moscow Physics Engineering Institute

Part 1. General approaches and considerations

Section 1. Experimental data and random variables: representation and statistics

- 1. Experimental and theoretical cycles and developments in physical studies
 - a. Observation
 - b. Experiment
 - c. Model
- 2. Representation of experimental data and statistics
 - a. Mean and standard deviation
 - b. Empirical distribution
 - c. Histogram
- 3. Probabilistic grounds for experimental data analysis
 - a. Random variable
 - b. Probability distribution
 - c. Moments
- 4. Probability distribution functions
 - a. PMF
 - b. PDF
 - c. CDF
- 5. Statistics of random variable
 - a. Expectation and Variance
 - b. Co-variance and Correlation
 - c. Characteristic and generating functions
- 6. Stochastic process, random functions, waveforms and statistics
 - a. From random variable to random function
 - b. Averaging, ergodicity, stationarity
 - c. Transient processes
 - d. Nonlinear processes
- 7. Examples of stochastic processes
 - a. Poisson
 - b. Markov
 - c. Cox

Section 2. Analytical modelling of stochastic processes and phenomena

- 8. Challenges, drawbacks and benefits of analytical modeling
 - a. High risk high reward area
 - b. Analytics vs Monte Carlo
- 9. How to build a model of a sequence of stochastic processes
- 10. Distribution of sum of independent identically distributed random variables
 - a. Moments of the sum
 - b. PMF and PDF of the sum
 - c. Random sum moments: Burgess variance theorem
 - d. Random sum distribution: Laplace transform
- 11. Distribution of ordered random variables: order statistics approach
 - a. Erlang distribution of arrival times of stationary Poisson process
 - b. Order statistics of time-varying arrival times

Section 3. Monte Carlo modelling of stochastic processes and phenomena

- 12. Challenges, drawbacks and benefits of Monte Carlo modeling
- 13. Verification of MC modelling results

Section 4. Analysis of experimental and modelling results

- 14. Measurement errors
 - a. Statistical
 - b. Systematic
 - c. Error propagation
- 15. Cramer-Rao lower bound on parameter estimation
 - a. Fisher information integral
 - b. Cramer-Rao lower bound
 - c. Random number of events challenge
- 16. Empirical distribution function vs histogram: in-depth comparison
 - a. Histogram binning challenge and its optimization
 - b. Smirnov-Kolmogorov test of distance between distributions
 - c. Benefits of empirical distribution function approach
- 17. Approaches to hypothesis testing and parameter estimation
 - d. Least squares fitting
 - e. Chi squared test
 - f. Maximum Likelihood approach
 - g. Maximum Likelihood and "goodness-of-fit"
 - h. Smirnov-Kolmogorov test of "goodness-of-fit"

Part 2. Probabilistic modelling and analysis of photon-number-resolving detection and Silicon Photomultipliers

Section 1. Introduction to photon-number-resolving detection and SiPM

- 1. Physics, concepts, and designs of SiPM
- 2. Specific features of SiPM: correlated noise, nonlinearity

- 3. Measurement and characterization of photon-number-resolving detectors
- 4. Application areas and large projects with SiPM
- 5. State-of-art, challenges, and perspectives of SiPM technology

Section 2. Probabilistic modelling of SiPM response and performance in photon number resolution

- 6. How probability distributions of signal and noise are transformed from input to output
 - a. Photo-conversion (binomial)
 - b. Multiplication (excess noise)
 - c. Dark counts (Poisson)
 - d. Correlated events (crosstalk, afterpulsing)
- 7. Modelling of probability distributions of correlated events
 - a. Geometric chain model
 - b. Compound Poisson distribution
 - c. Branching Poisson process model
 - d. Generalized Poisson distribution
- 8. Analysis of experiments using Generalized Poisson distribution model of SiPM response
 - a. Results of S. Vinogradov' studies
 - b. Results of FBK and DESY studies
 - c. Results of CERN CMS studies
 - d. Application of the model to radiation-degraded SiPMs

Section 3. Probabilistic modelling of SiPM timing and performance in time resolution

- 9. How probability distribution of signal and noise event times are transformed by photon detection processes
 - a. Poisson point process
 - b. Super-Poisson (bunched) process affected by SiPM correlated events
 - c. Sub-Poisson (anti-bunched) process affected by SiPM pixel recovery time
- 10. Analysis of interarrival time distribution for dark and correlated events
 - a. Histogram approach
 - b. Empirical Complimentary CDF approach
- 11. Single-photon time resolution measurement using multi-photon transit time histogram
- 12. Calibration of gain of noisy low gain photomultipliers using transit time histogram
- 13. Modelling of SiPM time resolution
 - a. Filtered marked point process approach
 - b. Scintillation pulse detection (TOF PET)
 - c. Laser / LED pulse detection (LIDAR)
 - d. Contributions of baseline fluctuations due to electronic noise and DCR

Section 4. Probabilistic modelling of SiPM nonlinearity and saturation

- 14. General consideration of nonlinearity as a source of random losses and noises
- 15. Binomial nonlinearity detection of short light pulses
 - a. Conventional model: balls (Poisson photons) in bins (pixels)
 - b. Adjustments to crosstalk
 - c. Adjustments to recovery
- 16. Recovery nonlinearity detection of long light pulses

- a. Conventional model: non-paralizible counting with dead time
- b. Advanced model of exponential recovery process
- c. Advanced model of Markov reward-renewal process
- d. Recovery nonlinearity detection of long light pulses
- 17. Excess noise factor of nonlinearity

Section 5. Analysis of applicability and competitiveness of photodetectors

- 18. Total ENF and Detective Quantum Efficiency as FOM for detector performance
 - a. Noise-affected lower bound
 - b. Nonlinearity-affected upper bound
 - c. Optimal operating range
 - d. Dynamic range and detective range
- 19. Analysis of performance of modern photodetectors and SiPMs
 - a. PIN
 - b. PMT
 - c. APD
 - d. SiPM
 - e. SiPMs of various designs and vendors
- 20. Application analysis of SiPM competitiveness and potential
 - a. TOF PET
 - b. LIDAR

Big Data Analytics: tools & infrastructure

Marco Landoni Istituto Nazionale di Astrofisica

Lezione 1 (4 ore in tutto, 2+2)

- i) Introduzione ai BigData. Definizione ed esempi pratici sia in campo industriale che delle fisica
- ii) Tecniche di gestione dei dati in regime BigData
- iii) Maggiori framework conosciuti (Hadoop, Hive, Spark)
- iv) Applicazione a un dataset reale in ambiente locale

Lezione 2 (4 ore in tutto, 2+2)

- i) Approccio distribuito e cloud Computing. Accenno a gestione dei dati attraverso database non relazionali.
- ii) Servizi offerti dalle piattaforme commerciali (Google ad Amazon) per i problemi di BigData e di Machine Learning.
- iii) Architetture e servizi cloud per data preparation e data cleaning.
- iv) Esempi di applicazioni. Il caso di Google DataPrep

Lezione 3 (4 ore in tutto, 2+2)

- i) Dalla data preparation al data mining e analytics. Il caso di Google BigQuery e Google Analytics. Applicazioni in ambito di Astrofisica delle alte energie.
- ii) Calcolo Distribuito con Amazon. Il caso di Hubble Space Telescope. Analizzare un catalogo di una missione spaziale in 15 minuti.

Lezione 4 (4 ore in tutto)

- i) Machine Learning. Accenni e prime proprietà
- ii) Il problema della classificazione. Classificatori lineari Bayesiani e a massima verosimiglianza.

Classificatori basati sulla distanza e su vettori di supporto (Support Vector Machine)

- iii) Alberi di decisione e random forests. Adaboost.
- iv) Introduzione al concetto di rete neurale
- v) I tools messi a disposizione dalle piattaforme Cloud commericali per Machine-Learning-off the shelf.